首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this work, isobaric (vapour + liquid) equilibrium data have been determined at (53.3 and 91.3) kPa for the binary mixtures of (1-propanol + 1-butanol). The thermodynamic consistency of the experimental values was checked by means the traditional area test and the direct test methods. According to the criteria for the test methods, the (vapour + liquid) equilibrium results were found to be thermodynamically consistent. The experimental values obtained were correlated by using the van Laar, Margules, Wilson, NRTL, and UNIQUAC activity-coefficient models. The binary interaction parameters of the activity-coefficient models have been determined and reported. They have been compared with those calculated by the activity-coefficient models. The average absolute deviation in boiling point and vapour-phase composition were determined. The calculated maximum average absolute deviations were 0.86 K and 0.0151 for the boiling point and vapour-phase composition, respectively. Therefore, it was shown that the activity-coefficient models used satisfactorily correlate the (vapour + liquid) equilibrium results of the mixture studied. However, the performance of the UNIQUAC model was superior to all other models mentioned.  相似文献   

2.
Isobaric (vapour + liquid) equilibrium of (1,3-dioxolane or 1,4-dioxane + 2-methyl-1-propanol or 2-methyl-2-propanol) at 40.0 kPa and 101.3 kPa has been studied with a dynamic recirculating still. The experimental VLE data are thermodynamically consistent. From these data, activity coefficients were calculated and correlated with the Margules, van Laar, Wilson, NRTL and UNIQUAC equations. The VLE results have been compared with the predictions by the UNIFAC and ASOG methods.  相似文献   

3.
In this study for two binary systems {1,2-dichloroethane (1) + toluene (2)} and {1,2- dichloroethane (1) + acetic acid (2)}, the isobaric (vapour + liquid) equilibrium (VLE) data have been measured at atmospheric pressure. An all-glass Fischer–Labodest type capable of handling pressures from (0.25 to 400) kPa and temperatures up to 523.15 K was used. Experimental uncertainties for pressure, temperature, and composition have been calculated for each binary system. The data were correlated by means of the NRTL, UNIQUAC, UNIFAC, and Wilson models with satisfactory results.  相似文献   

4.
Saturated pressures of three binary systems of oligomeric polyethylene glycol mono-4-nonylphenyl ether (PEGNPE) with methanol, ethanol, and 2-propanol have been measured by using an autoclave (vapour + liquid) equilibrium (VLE) apparatus at temperatures ranging from (340 to 455) K and the oligomer content ranging from 0.100 to 0.400 in mole fraction. With a given feed composition, equilibrium pressures were measured at various temperatures to obtain VLE data. The experimental data were fitted to the Antoine equation and also correlated with activity coefficient models, the NRTL and the UNIQUAC. The correlation results showed good agreement between the calculated values and the experimental data. In general, the NRTL model yielded better results. Additionally, the solvent activities were evaluated from the experimental results and were compared with those from the NRTL and the UNIQUAC models.  相似文献   

5.
Isobaric (vapour + liquid + liquid) equilibria were measured for the (di-n-propyl ether + n-propyl alcohol + water) and (diisopropyl ether + isopropyl alcohol + water) system at 100 kPa.The apparatus used for the determination of (vapour + liquid + liquid) equilibrium data was an all-glass dynamic recirculating still with an ultrasonic homogenizer couple to the boiling flask.The experimental data demonstrated the existence of a heterogeneous ternary azeotrope for both ternary systems. The (vapour + liquid + liquid) equilibria data were found to be thermodynamically consistent for both systems.The experimental data were compared with the estimation using UNIQUAC and NRTL models and the prediction of UNIFAC model.  相似文献   

6.
《Fluid Phase Equilibria》2005,238(1):65-71
Consistent vapor–liquid equilibrium (VLE) data at 101.3 kPa have been determined for the ternary system isobutyl alcohol (IBA) + isobutyl acetate (IBAc) + butyl propionate (BUP) and two constituent binary systems: IBA + BUP and IBAc + BUP. The IBA + BUP system show lightly positive deviation from Raoult's law and IBAc + BUP system exhibits no deviation from ideal behaviour. The activity coefficients of the solutions were correlated with its composition by the Wilson, NRTL, UNIQUAC models. The ternary system is very well predicted from binary interaction parameters. BUP eliminates the IBA–IBAc binary azeotrope. The change of phase equilibria behaviour is significant therefore this solvent seems to be an effective agent for that azeotrope mixture separation. In fact, the mean relative volatility on a solvent free basis is 1.8.The binary VLE data measured in the present study passed the thermodynamic consistency test of Fredenslund et al. [A. Fredenslund, J. Gmehling, P. Rasmussen, Vapor–Liquid Equilibria Using UNIFAC, A Group Contribution Method, Elsevier, Amsterdam, 1977], and were correlated by the Wilson, NRTL and UNIQUAC models to relate activity coefficients with mole fractions. The VLE data obtained for the ternary system passed both the Wisniak LW [J. Wisniak, Ind. Eng. Chem. Res. 32 (1993) 1531–1533] and McDermott–Ellis [C. McDermott, S.R. Ellis, Chem. Eng. Sci. 20 (1965) 293–296] consistency test. The parameters obtained from binary data were utilized directly to predict the phase behaviour of the ternary system. The results showed an excellent agreement with experimental values.  相似文献   

7.
The (vapour + liquid) equilibrium (VLE) and boiling temperature measurements have been determined at 95.3 kPa as a function of composition for the binary liquid mixtures of N-methyl-2-pyrrolidone (NMP) with branched alcohols using a Swietoslawski-ebulliometer. The branched alcohols include 2-propanol, 2-butanol, 2-methyl-l- propanol, 2-methyl-2-propanol, and 3-methyl-l-butanol. The experimental temperature-composition (Tx) results were used to estimate Wilson parameters and then used to calculate the equilibrium vapour compositions and the excess Gibbs free energy at T = 298.15 K. The experimental temperature-composition (T, x) results were correlated with the Wilson, the NRTL and the UNIQUAC models. The experimental results are interpreted in terms of intermolecular interactions between constituent molecules.  相似文献   

8.
Experimental (liquid + liquid) equilibrium (LLE) data for a ternary system containing (ethylene glycol + benzene + cyclohexane) were determined at temperatures (298.15, 308.15, and 318.15) K and at atmospheric pressure. The experimental distribution coefficients and selectivity factors are presented to evaluate the efficiency of the solvent for extraction of benzene from cyclohexane. The effect of temperature in extraction of benzene from the (benzene + cyclohexane) mixture indicated that at lower temperatures the selectivity (S) is higher, but the distribution coefficient (K) is rather lower. The LLE results for the system studied were used to obtain binary interaction parameters in the UNIQUAC and NRTL models by minimizing the root mean square deviations (RMSD) between the experimental results and calculated results. Using the interaction parameters obtained, the phase equilibria in the systems were calculated and plotted. The NRTL model fits the (liquid + liquid) equilibrium data of the mixture studied slightly better. The root mean square deviations (RMSDs) obtained comparing calculated and experimental two-phase compositions are 0.92% for the NRTL model and 0.95% for the UNIQUAC model.  相似文献   

9.
《Fluid Phase Equilibria》2005,238(2):193-203
The present paper reports liquid–liquid equilibrium data for the system refined cottonseed oil + commercial linoleic acid + ethanol + water at 298.2 K. The experimental data were used for adjusting parameters of the NRTL and UNIQUAC models. The global deviations between calculated and experimental concentrations were 0.80% for the NRTL model and 1.44% for the UNIQUAC equation. The influence of the solvent on the distribution coefficient of tocopherols was also studied. UNIQUAC and NRTL interaction parameters between tocopherols and the other pseudocomponents were determined assuming that the nutraceutical compound is present at infinite dilution in the liquid–liquid equilibrium system. The obtained parameter set enables the simulation of liquid–liquid extractors.  相似文献   

10.
Liquid–liquid equilibrium (LLE) data were determined for the quaternary systems of {(water + methanol or ethanol) + m-xylene + n-dodecane} at three temperatures 298.15, 303.15 and 313.15 K and atmospheric pressure. The composition of liquid phases at equilibrium was determined by gas–liquid chromatography and the results were correlated with the UNIQUAC and NRTL activity coefficient models. The partition coefficients and the selectivity factor of the solvent are calculated and compared. The phase diagrams for the quaternary systems including both the experimental and correlated tie lines are presented.  相似文献   

11.
(Liquid + liquid) equilibrium (LLE) data for ternary systems: (heptane + benzene + N-formylmorpholine), (heptane + toluene + N-formylmorpholine), and (heptane + xylene + N-formylmorpholine) have been determined experimentally at temperatures ranging from 298.15 K to 353.15 K. Complete phase diagrams were obtained by determining solubility and tie-line data. Tie-line compositions were correlated by Othmer–Tobias and Bachman methods. The universal quasichemical activity coefficient (UNIQUAC) and the non-random two liquids equation (NRTL) were used to predict the phase equilibrium in the system using the interaction parameters determined from experimental data. It is found that UNIQUAC and NRTL used for LLE could provide a good correlation. Distribution coefficients, separation factors, and selectivity were evaluated for the immiscibility region.  相似文献   

12.
Isobaric (vapour  +  liquid) equilibrium (v.l.e.) of (1,3-dioxolane, or 1,4-dioxane  +  1-butanol, or 2-butanol) at 40.0 kPa and 101.3 kPa have been studied with a dynamic recirculating still. The experimental data for all mixtures were checked for thermodynamic consistency using the method of Van Ness. Activity coefficients calculated from (v.l.e.) data have been correlated with different equations (Wilson, Van Laar, Margulles, NRTL, and UNIQUAC), giving satisfactory results. Predictions with the group contribution methods ASOG and UNIFAC were also obtained.  相似文献   

13.
(Solid + liquid) phase diagrams have been determined for (hexylamine, or octylamine, or 1,3-diaminopropane + acetonitrile) mixtures. Simple eutectic systems have been observed in these mixtures. (Liquid + liquid) phase diagrams have been determined for (octylamine, or decylamine + propanenitrile, or + butanenitrile) mixtures. Mixtures with propanenitrile and butanenitrile show immiscibility in the liquid phase with an upper critical solution temperature, UCST. (Solid + liquid) phase diagrams have been correlated using NRTL, NRTL 1, Wilson and UNIQUAC equations. (Liquid + liquid) phase diagrams have been correlated using NRTL equation.  相似文献   

14.
Experimental (vapour + liquid) equilibrium results for the binary systems, (methanol + water) at the local atmospheric pressure of 95.3 kPa and at sub-atmospheric pressures of (15.19, 29.38, 42.66, 56.03, and 67.38) kPa, (water + glycerol) system at pressures (14.19, 29.38, 41.54, 54.72, 63.84, and 95.3) kPa and the (methanol + glycerol) system at pressures (32.02 and 45.3) kPa were obtained over the entire composition range using a Sweitoslwasky-type ebulliometer. The relationship of the liquid composition (x1) as a function of temperature (T) was found to be well represented by the Wilson model. Computed vapour phase mole fractions, activity coefficients and the measured values along with optimum Wilson parameters are presented.  相似文献   

15.
(Liquid + liquid) equilibrium (LLE) results for the ternary mixtures of (methanol or ethanol + toluene or m-xylene + n-dodecane) at three temperatures (298.15, 303.15 and 313.15) K are reported. The compositions of liquid phases at equilibrium were determined by g.l.c. measurements and the results were correlated with the UNIQUAC and NRTL activity coefficient models. The partition coefficients and the selectivity factor of methanol and ethanol are calculated and compared to suggest which alcohol is more suitable for extracting the aromatic hydrocarbons (toluene or m-xylene) from n-dodecane. The phase diagrams for the ternary mixtures including both the experimental and correlated tie lines are presented. From the phase diagrams and the selectivity factors it is concluded that methanol has a higher efficiency as a solvent in extraction of aromatic hydrocarbon from alkane mixtures.  相似文献   

16.
Isobaric (vapour  +  liquid) equilibria were determined atp =  101.3 kPa for {methanol  +  allyl acetate (3-acetoxy-1-propene)} and {vinyl acetate (1-acetoxyethylene)  +  allyl acetate}. The thermodynamic consistency of the experimental data was determined with a modified Dechema test. The activity coefficients were correlated with Margules, van Laar, NRTL, UNIQUAC, Wilson and ASOG. Densities, excess molar volumes, refractive indices, speed sounds and changes of refractive index and speed sound on mixing have been determined at 298.15 K and the results fitted to Redlich–Kister polynomials. Allyl acetate can be a possible solvent for extractive distillation.  相似文献   

17.
(Liquid + liquid) equilibrium (LLE) data for {water (1) + linalool (2) + limonene (3)} ternary system at T = (298.15, 308.15, and 318.15 ± 0.05) K are reported. The organic chemicals were quantified by gas chromatography using a flame ionisation detector while water was quantified using a thermal conductivity detector. The effect of the temperature on (liquid + liquid) equilibrium is determined and discussed. Experimental data for the ternary mixture are compared with values calculated by the NRTL and UNIQUAC equations, and predicted by means of the UNIFAC group contribution method. It is found that the UNIQUAC and NRTL models provide a good correlation of the solubility curve at these three temperatures, while comparing the calculated values with the experimental ones, the best fit is obtained with the NRTL model. Finally, the UNIFAC model provides poor results, since it predicts a greater heterogeneous region than experimentally observed.  相似文献   

18.
The isothermal and isobaric (vapour + liquid) equilibria for (2,2-dimethoxypropane + methanol) and (2,2-dimethoxypropane + acetone) measured with an inclined ebulliometer are presented. The experimental results are analysed using the UNIQUAC equation with the temperature-dependent binary parameters with satisfactory results. Isobaric (vapour + liquid) equilibria data for these systems at p=99.99 kPa are compared with the literature data. Experimental vapour pressure of 2,2-dimethoxypropane are also included.  相似文献   

19.
The (vapour + liquid) equilibria (VLE) data for the binary system of glycidyl butyrate (1) and epichlorohydrin (2) was studied at (100, 88.66, and 56) kPa. Azeotropic behaviour has not been found in this work. The activity coefficients were obtained by the non-linear least squares method based on minimization from the equilibrium data. Average relative deviations between calculated values and the experimental data of temperature are all lower than 0.99% for the three models at the three different pressures investigated. The root mean square deviations (RMSD) of gas phase compositions y1 and temperatures are all lower than 0.0099 and 1.1 K for 100 kPa, 0.0094 and 4.5 K for 88.66 kPa and 0.0095 and 3.7 K for 56 kPa. The thermodynamic consistency of the calculated data is checked by the Herrington method. The experimental VLE data are compared with the correlated values obtained by means of the NRTL, UNIQUAC, and Wilson models.  相似文献   

20.
In this paper, isobaric (vapor + liquid) equilibrium (VLE) data for the binary system methanol + 2-butyl alcohol and the quaternary system methyl acetate + methanol + 2-butyl alcohol + 2-butyl acetate were determined at P = 101.33 kPa in a modified Rose still. The binary VLE data were found to be thermodynamic consistency by the Herrington method. The VLE data for the binary system were correlated by the Wilson and NRTL equations respectively, which were used to predict the VLE data of the quaternary system. The results showed that the Wilson and NRTL models matched well with the (vapor + liquid) phase equilibrium data. The deviations for the vapor-phase compositions and the equilibrium temperatures are reasonably small and the models are both suitable for these systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号