首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Density, speed of sound and viscosity measurements of binary aqueous solutions of tri-potassium citrate were performed from dilute up to near saturated concentration range at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K. Volumetric and transport properties of ternary aqueous solutions of (tri-potassium citrate + KCl) have also been measured within the molality range of KCl (0.05, 0.15, 0.25, 0.35, 0.45, and 0.55) at different temperatures. Apparent molar volume and apparent molar isentropic compressibility have been calculated from the density and speed of sound for binary and ternary aqueous solutions of tri-potassium citrate. Apparent molar volume and apparent molar isentropic compressibility of ternary aqueous solutions of (tri-potassium citrate + KCl) have been correlated with the Redlich–Mayer equation. Viscosity values of ternary aqueous solutions of (tri-potassium citrate + KCl) have been fitted with the Jones–Dole equation. The results obtained have been interpreted in elucidating the effect of tri-potassium citrate on the interaction of KCl–H2O. Density and viscosity values of ternary aqueous solutions of (tri-potassium citrate + KCl) have been predicted successfully using the methods proposed by Laliberte (2007), Laliberte and Cooper (2004) [9], [10] and Zafarani-Moattar and Majdan-Cegincara (2009) [11].  相似文献   

2.
(Vapour + liquid) equilibrium data (water activity, vapour pressure, osmotic coefficient, and activity coefficient) of binary aqueous solutions of 1-hexyl-3-methylimidazolium chloride ([C6mim][Cl]), methyl potassium malonate, and ethyl potassium malonate and ternary {[C6mim][Cl] + methyl potassium malonate} and {[C6mim][Cl] + ethyl potassium malonate} aqueous solutions were obtained through the isopiestic method at T = 298.15 K. These results reveal that the ionic liquid behaves as surfactant-like and aggregates in aqueous solutions at molality about 0.4 mol · kg−1. The constant water activity lines of all the ternary systems investigated show small negative deviations from the linear isopiestic relation (Zdanovskii–Stokes–Robinson rule) derived using the semi-ideal hydration model. The density and speed of sound measurements were carried out on solutions of methyl potassium malonate and ethyl potassium malonate in water and of [C6mim][Cl] in aqueous solutions of 0.25 mol · kg−1 methyl potassium malonate and ethyl potassium malonate at T = (288.15 to 308.15) K at atmospheric pressure. From the experimental density and speed of sound data, the values of the apparent molar volume, apparent molar isentropic compressibility and excess molar volume were evaluated and from which the infinite dilution apparent molar volume and infinite dilution apparent molar isentropic compressibility were calculated at each temperature. Although, there are no clear differences between the values of the apparent molar volume of [C6mim][Cl] in pure water and in methyl potassium malonate or ethyl potassium malonate aqueous solutions, however, the results show a positive transfer isentropic compressibility of [C6mim][Cl] from pure water to the methyl potassium malonate or ethyl potassium malonate aqueous solutions. The results have been interpreted in terms of the solute–water and solute–solute interactions.  相似文献   

3.
The apparent molar volume and apparent molar isentropic compressibility of solutions of sodium di-hydrogen phosphate (NaH2PO4) in (1-propanol + water) mixed-solvent media with alcohol mass fractions of 0.00, 0.05, 0.10, and 0.15 are reported over the range of temperature (283.15 to 303.15) K at 5 K intervals. The results were fitted to a Redlich–Mayer type equation from which the apparent molar volume and apparent molar isentropic compressibility of the solutions at the infinite dilution were also calculated at the working temperature. The results show a positive transfer volume of NaH2PO4 from an aqueous solution to an aqueous 1-propanol solution. The apparent molar isentropic compressibility of NaH2PO4 in aqueous 1-propanol solutions is negative and it increases with increasing the concentration of NaH2PO4, 1-propanol, and temperature. Electrical conductivity and refractive index of the solutions are also studied at T = 298.15 K. The effects of the electrolyte concentration and relative permittivity of the medium on the molar conductivity were also investigated.  相似文献   

4.
The apparent specific volumes and isentropic compressibilities have been determined for polyvinylpyrrolidone in aqueous solutions of sodium citrate by density and sound velocity measurements at T = (283.15 to 308.15) K at atmospheric pressure. The results show a positive transfer volume of PVP from an aqueous solution to an aqueous sodium citrate solution. For low concentrations of PVP, the apparent specific volumes of PVP in water increased along with an increase in the polymer mass fraction, while in aqueous sodium citrate solutions decreased along with an increase in the polymer mass fraction. For high concentrations of PVP, the apparent specific volumes of PVP in water and in aqueous sodium citrate solutions were independent of the polymer mass fraction. The apparent specific isentropic compressibility of PVP is negative at T = (283.15 and 288.15) K, which imply that the water molecules around the PVP molecules are less compressible than the water molecules in the bulk solutions. The positive values of apparent specific isentropic compressibility at T = (298.15, 303.15, and 308.15) K imply that the water molecules around the PVP molecules are more compressible than the water molecules in the bulk solutions. Finally, it was found that the apparent specific isentropic compressibility of PVP increases as the concentration of sodium citrate increases.  相似文献   

5.
The alkyl chain length of 1-alkyl-3-methylimidazolium bromide ([Rmim][Br], R = propyl (C3), hexyl (C6), heptyl (C7), and octyl (C8)) was varied to prepare a series of room-temperature ionic liquids (RTILs), and experimental measurements of density and speed of sound at different temperatures ranging from (288.15 to 308.15) K for their aqueous and methanolic solutions in the dilute concentration region (0.01 to 0.30) mol · kg?1 were taken. The values of the compressibilities, expansivity and apparent molar properties for [Cnmim][Br] in aqueous and methanolic solutions were determined at the investigated temperatures. The obtained apparent molar volumes and apparent molar isentropic compressibilities were fitted to the Redlich–Mayer and the Pitzer’s equations from which the corresponding infinite dilution molar properties were obtained. The values of the infinite dilution molar properties were used to obtain some information about solute–solvent and solute–solute interactions. The thermodynamic properties of investigated ionic liquids in aqueous solutions have been compared with those in methanolic solutions. Also, the comparison between thermodynamic properties of investigated solutions and those of electrolyte solutions, polymer solutions, cationic surfactant solutions and tetraalkylammonium salt solutions have been made.  相似文献   

6.
The aim of this work is to obtain further evidence about the salting-out effect produced by the addition of tri-sodium citrate to aqueous solutions of water miscible ionic liquid 1-butyl-3-methylimidazolium bromide ([C4mim][Br]) by evaluating the effect of tri-sodium citrate on the thermodynamic properties of aqueous solutions of this ionic liquid. Experimental measurements of density and sound velocity at different temperatures ranging from (288.15 to 308.15) K, the refractive index at 308.15 K and the liquid–liquid phase diagram at different temperatures ranging from (288.15 to 338.15) K for aqueous solutions containing 1-butyl-3-methylimidazolium bromide ([C4mim][Br]) and tri-sodium citrate (Na3Cit) are taken. The apparent molar volume of transfer of [C4mim][Br] from water to aqueous solutions of Na3Cit have positive values and it increases by increasing salt molality. Although at high IL molality, the apparent molar isentropic compressibility shows similar behaviour with that of the apparent molar volume. However at low concentrations of IL, the apparent molar isentropic compressibility of transfer of [C4mim][Br] from water to aqueous solutions of Na3Cit have negative values. The effects of temperature and the addition of Na3Cit and [C4mim][Br] on the liquid–liquid phase diagram of the investigated system have been studied. It was found that an increase in temperature caused the expansion of the one-phase region. The presence of Na3Cit triggers a salting-out effect, leading to significant upward shifts of the liquid–liquid de-mixing temperatures of the system. The effect of temperature on the phase-forming ability in the system investigated has been studied based on a salting-out coefficient obtained from fitting the binodal values to a Setschenow-type equation for each temperature. Based on cloud point values, the energetics of the clouding process have been estimated and it was found that both of entropy and enthalpy are the driving forces for biphasic formation.  相似文献   

7.
Physico-chemical properties viz., density, viscosity, and refractive index at temperatures = (298.15, 303.15, and 308.15) K and the speed of sound at T = 298.15 K are measured for the binary mixtures of methylcyclohexane with ethanol, propan1-ol, propan-2-ol, butan-1-ol, 2-methyl-1-propanol, and 3-methyl-1-butanol over the entire range of mixture composition. From these data, excess molar volume, deviations in viscosity, molar refraction, speed of sound, and isentropic compressibility have been calculated. These results are fitted to the polynomial equation to derive the coefficients and standard errors. The experimental and calculated quantities are used to study the nature of mixing behaviours between the mixture components.  相似文献   

8.
Densities, ρ, speed of sound, u for glycine, l-alanine have been measured in aqueous solutions of dipotassium hydrogen phosphate (DKHP) ranging from 0.2, 0.4, 0.6 and 0.8 mol·kg−1 at temperatures T = (288.15, 298.15, 308.15 and 318.15) K. The different parameters such as apparent molar volume, limiting apparent molar volume, transfer volume, partial molar expansibility have been derived from density data. Experimental speeds of sound data were used to estimate apparent molar adiabatic compressibility, limiting apparent molar adiabatic compressibility, transfer parameter and hydration number. These parameters have been discussed in the light of ion-ion and ion-solvent interactions.  相似文献   

9.
The densities of tetraphenylphosphonium bromide, sodium tetraphenylborate, lithium perchlorate, sodium perchlorate and lithium bromide in γ-butyrolactone at (288.15, 293.15, 298.15, 303.15, 308.15 and 313.15) K and speed of sound at 298.15 K have been measured. From these data apparent molar volumes VΦ at (288.15, 293.15, 298.15, 303.15, 308.15 and 313.15) K and the apparent molar isentropic compressibility KS,Φ, at T = 298.15 K of the salts have been determined. The apparent molar volumes and the apparent molar isentropic compressibilities were fitted to the Redlich, Rosenfeld and Mayer equation as well as to the Pitzer and Masson equations yielding infinite dilution data. The obtained limiting values have been used to estimate the ionic data of the standard partial molar volume and the standard partial isentropic compressibility in γ-butyrolactone solutions.  相似文献   

10.
The apparent molar volumes and isentropic compressibility of glycine, l-alanine and l-serine in water and in aqueous solutions of (0.500 and 1.00) mol · kg?1 di-ammonium hydrogen citrate {(NH4)2HCit} and those of (NH4)2HCit in water have been obtained over the (288.15 to 313.15) K temperature range at 5 K intervals at atmospheric pressure from measurements of density and ultrasonic velocity. The apparent molar volume and isentropic compressibility values at infinite dilution of the investigated amino acids have been obtained and their variations with temperature and their transfer properties from water to aqueous solutions of (NH4)2HCit have also been obtained. The results have been interpreted in terms of the hydration of the amino acids. In the second part of this work, water activity measurements by the isopiestic method have been carried out on the aqueous solutions of {glycine + (NH4)2HCit}, {alanine + (NH4)2HCit}, and {serine + (NH4)2HCit} at T = 298.15 K at atmospheric pressure. From these measurements, values of vapour pressure, osmotic coefficient, activity coefficient and Gibbs free energy were obtained. The effect of the type of amino acids on the (vapour + liquid) equilibrium of the systems investigated has been studied. The experimental water activities have been correlated successfully with the segment-based local composition Wilson model. Furthermore, the thermodynamic behaviour of the ternary solutions investigated has been studied by using the semi-ideal hydration model and the linear concentration relations have been tested by comparing with the isopiestic measurements for the studied systems at T = 298.15 K.  相似文献   

11.
Densities, speeds of sound, and refractive indices of 12 binary systems of alkanes (hexane, heptane, octane, and nonane) with aromatics (benzene, or toluene, or ethylbenzene) at T = 313.15 K and at atmospheric pressure were determined over the whole composition range, and are presented in this paper. From the experimental results, the derived and excess properties (isentropic compressibility, excess molar volumes, and excess molar isentropic compressibility) at T = 313.15 K were calculated and satisfactorily fitted to the Redlich–Kister equation.  相似文献   

12.
Viscosities, densities, and speed of sound have been measured over the whole composition range for (methylcyclopentane with ethanol, 1-propanol, 1-butanol, 2-propanol, 2-butanol, and 2-pentanol) at T = (293.15, 298.15, and 303.15) K and atmospheric pressure along with the properties of the pure components. Excess molar volumes, isentropic compressibility, deviations in isentropic compressibility, and viscosity deviations for the binary systems at the above-mentioned temperatures were calculated and fitted to Redlich–Kister equation to determine the fitting parameters and the root-mean square deviations. UNIQUAC equation was used to correlate the experimental data. Dynamic viscosities of the binary mixtures have been predicted using UNIFAC-VISCO and ASOG-VISCO methods.  相似文献   

13.
Densities, ρ, and speed of sound, u for glycine, L-alanine and L-valine in (0.2, 0.4, 0.6, and 0.8) mol · kg−1 aqueous solutions of trisodium citrate at T = (288.15, 298.15, 308.15 and 318.15) K have been measured. The different parameters such as apparent molar volume, limiting apparent molar volume, transfer volume, have been derived from density data. Experimental values of the speed of sound were used to estimate apparent molar apparent molar isentropic compression, limiting apparent molar isentropic compression, and transfer parameter. The pair and triplet interaction coefficient have been calculated from transfer parameters.  相似文献   

14.
Density, speed of sound, and refractive index for the binary systems (butanoic acid + propanoic acid, or 2-methyl-propanoic acid) were measured over the whole composition range and at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K. The excess molar volumes, isentropic compressibilities, excess isentropic compressibilities, molar refractions, and deviation in refractive indices were also calculated by using the experimental densities, speed of sound, and refractive indices data, respectively. The Redlich–Kister smoothing polynomial equation was used to fit the excess molar volume, excess isentropic compressibility and deviation in refractive index data. The thermodynamic properties have been discussed in terms of intermolecular interactions between the components of the mixtures.  相似文献   

15.
Precise density and sound velocity measurements have been carried out for aqueous solutions of PPG725 in the absence and presence of (0.2 and 0.5) mol · kg−1 amino acids: alanine, glycine, serine and proline, and also for aqueous solutions of these amino acids in the absence and presence of 0.01 w/w PPG725 at T = (288.15, 293.15, 298.15, 303.15 and 308.15) K. From the experimental density and sound velocity values, the apparent molar volume and isentropic compressibility have been obtained and extrapolated to infinite dilution. The infinite dilution apparent molar properties for transfer of PPG from water to aqueous amino acids solutions and also those for transfer of amino acids from water to aqueous PPG solutions have been studied. Temperature dependency of the infinite dilution apparent molar volume was utilised to determine structure-breaker or structure-maker effects of the solutes. Hydration numbers of the amino acids in the investigated aqueous solutions have been evaluated from the volumetric and compressibility properties. All results are discussed based on the salting-out aptitude of the amino acids (hydrophilic + hydrophobic) interactions and (hydrophobic + hydrophobic) interactions occurred between PPG and the investigated amino acids.  相似文献   

16.
Alkoxyamines containing two hydrophilic groups with great affinity to water are multipurpose compounds with important applications, either on theoretical or practical grounds. The thermodynamic characterization of aqueous mixtures of these compounds is scant. Ultrasound speed measurements have been made in 53 mixtures of the aqueous ethoxypropane-1-amine binary system, across the entire composition range and temperatures between T = (283.15 and 303.15) K, at atmospheric pressure. By combining ultrasound speed and density data, values of the isentropic compressibility were derived. Excess molar isentropic compressions were estimated and analytically fitted to Redlich–Kister polynomial equations. Excess partial molar quantities were then calculated including their limiting values, which were obtained from the Redlich–Kister fitting coefficients. The temperature dependences of limiting partial molar isentropic compressions and isobaric expansions were also scrutinized. Compressibility changes associated with different patterns of aggregation and hydration over the whole composition range are identified.  相似文献   

17.
Experimental values of density, viscosity, and refractive index at T = (298.15, 303.15, and 308.15) K while the speed of sound at T = 298.15 K in the binary mixtures of methylcyclohexane with n-hexane, n-heptane, n-octane, n-nonane, n-decane, n-dodecane, and iso-octane are presented over the entire mole fraction range of the binary mixtures. Using these data, excess molar volume, deviations in viscosity, molar refraction, speed of sound, and isentropic compressibility are calculated. All the computed quantities are fitted to Redlich and Kister equation to derive the coefficients and estimate the standard error values. Such a study on model calculations in addition to presentation of experimental data on binary mixtures are useful to understand the mixing behaviour of liquids in terms of molecular interactions and orientational order–disorder effects.  相似文献   

18.
Density ρ, viscosity η, and refractive index nD, values for (tetradecane + benzene, + toluene, + chlorobenzene, + bromobenzene, + anisole) binary mixtures over the entire range of mole fraction have been measured at temperatures (298.15, 303.15, and 308.15) K at atmospheric pressure. The speed of sound u has been measured at T = 298.15 K only. Using these data, excess molar volume VE, deviations in viscosity Δη, Lorentz–Lorenz molar refraction ΔR, speed of sound Δu, and isentropic compressibility Δks have been calculated. These results have been fitted to the Redlich and Kister polynomial equation to estimate the binary interaction parameters and standard deviations. Excess molar volumes have exhibited both positive and negative trends in many mixtures, depending upon the nature of the second component of the mixture. For the (tetradecane + chlorobenzene) binary mixture, an incipient inversion has been observed. Calculated thermodynamic quantities have been discussed in terms of intermolecular interactions between mixing components.  相似文献   

19.
In this work, the physical properties, dynamic viscosities, densities, and speed of sound have been measured over the whole composition range and atmospheric pressure for the binary mixtures (methylcyclopentane with acetone, butanone, and 2-pentanone) at several temperatures T = (293.15, 298.15, and 303.15) K along with the properties of the pure components. Excess molar volumes, isentropic compressibility, deviations in isentropic compressibility and viscosity deviation for the binary systems at the above-mentioned temperatures were calculated and fitted to the Redlich–Kister equation to determine the fitting parameters and the root-mean-square deviations. The UNIQUAC equation was used to correlate the experimental viscosity data. The UNIFAC-VISCO method and ASOG-VISCO method, based on contribution groups, were used to predict the dynamic viscosities of the binary mixtures. The interaction parameters of cycloalkanes with ketones (CHcy/CO) have been determined for their application in the predictive UNIFAC-VISCO method.  相似文献   

20.
Experimental results of density (ρ), speed of sound (u), and refractive index (nD) have been obtained for aqueous solutions of ethylene glycol monomethyl ether (EGMME), ethylene glycol monoethyl ether (EGMEE), diethylene glycol monomethyl ether (DEGMME), and diethylene glycol monoethyl ether (DEGMEE) over the entire concentration range at T = 298.15 K. From these measurements, the derived parameters, apparent molar volume of solute (?V), excess molar volume (VE), isentropic compressibility of solution (βS), apparent molar isentropic compressibility of solute (?KS), deviation in isentropic compressibility (ΔβS), molar refraction [R]1,2 and deviation in refractive index of solution (ΔnD) have been calculated. The Redlich–Kister equation has been fitted to the calculated values of VE, ΔβS and ΔnD for the solution. The results obtained are interpreted in terms of hydrogen bonding and various interactions among solute and solvent molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号