首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Copen is a derivative obtained from the structural modification of osthole, which inhibits tumoral proliferation in many tumor cell lines. A rapid and sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was established for the quantification of copen in rat plasma. After a simple sample preparation procedure by one‐step protein precipitation with methanol, copen and bicalutamide (internal standard, IS) were chromatographed on a Zorbax SB‐C18 (4.6×100 mm, 1.8 µm) column with a mobile phase consisting of methanol–5 mm ammonium formate water with 0.1% formic acid (80:20, v/v). MS detection was performed on a triple quadrupole tandem mass spectrometer in the multiple reaction monitoring mode with a positive eletrospray ionization source. The assay was validated in the concentration range of 51.58–20630 ng/mL, with a limit of quantitation (LOQ) of 51.58 ng/mL. The intra‐ and inter‐day precisions (relative standard deviation) were ≤3.21 and ≤11.3%, respectively, with accuracy (%) in the range of 94.66–102.1%. The method was fully validated in a study of the pharmacokinetics of copen (25 mg/kg) after intragastric administration in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
A novel, specific and sensitive ultraperformance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) method was developed for the simultaneous determination of quinapril and its active metabolite quinaprilat in human plasma. The method involves a simple, one‐step extraction procedure coupled with an Acquity UPLC? BEH C18 column (100 × 2.1 mm, i.d., 1.7 µm) with isocratic elution at a flow‐rate of 0.2 mL/min and lisinopril as the internal standard. Detection was performed on a triple‐quadrupole tandem mass spectrometer in multiple reaction monitoring mode via electrospray ionization. Using 250 µL plasma, the methods were validated over the concentration range 5.010–500.374 ng/mL for quinapril and 10.012–1000 ng/mL for quinaprilat, with a lower limit of quantification of 5.010 ng/mL for quinapril and 10.012 ng/mL for quinaprilat. The intra‐ and inter‐day precision and accuracy were within 10.0%. The recovery was 85.8, 62.6 and 61.3% for quinapril, quinaprilat and lisinopril, respectively. Total run time was 3.0 min only. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
A simple, rapid and sensitive liquid chromatography with tandem mass spectrometry (LC‐MS/MS) method for the determination of periplocymarin in biological samples was developed and successfully applied to the pharmacokinetic and tissue distribution study of periplocymarin after oral administration of periplocin. Biological samples were processed with ethyl acetate by liquid–liquid extraction, and diazepam was used as the internal standard. Periplocymarin was analyzed on a C18 column with isocratic eluted mobile phase composed of methanol and water (containing 0.1% formic acid) at a flow rate of 0.2 mL/min (73:27, v/v). Detection was performed on a triple‐quadrupole tandem mass spectrometer using positive‐ion mode electrospray ionization in the selected reaction monitoring mode. The MS/MS ion transitions monitored were m/z 535.3→355.1 and 285.1→193.0 for periplocymarin and diazepam, respectively. Good linearity was observed over the concentration ranges. The lower limit of quantification was 0.5 ng/mL in plasma and tested tissues. The intra‐and inter‐day precisions (relative standard deviation) were <10.2 and 10.5%, respectively, and accuracies (relative error) were between ?6.8 and 8.9%. Recoveries in plasma and tissue were >90%. The validated method was successfully applied to the pharmacokinetic and tissue distribution studies of periplocymarin in rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
A sensitive and specific high‐performance liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed for the determination of Grayanotoxin I (GTX I) and Grayanotoxin III (GTX III) in rat whole blood. Grayanotoxins (GTXs) and clindamycin as internal standard (IS) were extracted from rat blood via solid‐phase extraction using PEP solid‐phase extraction cartridges. Chromatographic separation of the analytes was achieved on a Kinetex C18 (100 × 2.1 mm, 2.6 µm) reversed‐phase column using a gradient elution with the mobile phase of 1% acetic acid in water and methanol at a flow rate of 0.2 mL/min. Electrospray ionization mass spectrometry was operated in the positive ion mode with multiple reaction monitoring. The calibration curves obtained were linear over the concentration range of 1–100 ng/mL with a lower limit of quantification of 1 ng/mL for GTXs. The relative standard deviation of intra‐day and inter‐day precision was below 6.8% and accuracy ranged from 94.8 to 106.6%. The analytes were stable in the stability studies. The validated method was successfully applied to the quantification and toxicokinetic study of GTXs in rats for the first time after oral administration of 11.52 mg/kg mad honey and 0.35 mg/kg GTX III, respectively. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
A sensitive high‐performance liquid chromatography–tandem mass spectrometric (HPLC‐MS/MS) assay has been developed for the quantitative analysis of vardenafil in human plasma. Vardenafil and the internal standard, alprazolam, were extracted from 0.2 mL aliquots of alkalinized plasma by a single solvent extraction into hexane : dichloromethane. Reversed‐phase chromatographic separation was affected by gradient elution with mobile phases consisting of 10 mM ammonium formate pH 7.0 (solvent A) and methanol (100%, solvent B), delivered at a flow rate of 0.4 mL/min. The analytes were detected by using an electrospray ion source on a 4000 QTrap triple quadrupole mass spectrometer operating in positive ionization mode. The mass transitions were m/z 489.3 → 312.2 for vardenafil and m/z 309.2 → 281.0 for alprazolam. The assay was linear over the concentration range of 0.2–100 ng/mL, with correlation coefficients ≥0.995. The intra‐ and inter‐day precision was less than 5.4% in terms of relative standard deviation and the accuracy was within 12.7% in terms of relative error. The lower limit of quantitation was set at 0.2 ng/mL. The high sensitivity and acceptable performance of the assay allowed its application to the analysis of plasma samples obtained following the oral administration of vardenafil to healthy male volunteers in a pharmacokinetic study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A sensitive, selective and robust liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed for the quantification of miglitol in rat plasma. The sample preparation procedures involved protein precipitation and unique solid‐phase extraction, which efficiently removed sources of ion suppression and column degradation interference present in the plasma. Chromatographic separation was achieved on an amide column using 10 mmol/L CH3COONH4 and CH3CN:CH3OH (90:10, v/v) as the mobile phase under gradient conditions. Detection was performed using tandem mass spectrometry equipped with an electrospray ionization interface in positive ion mode.The selected reaction monitoring transitions for miglitol and a stable isotope‐labeled internal standard were m/z 208 → m/z 146 and m/z 212 → m/z 176, respectively. The correlation coefficients of the calibration curves ranged from 0.9984 to 0.9993 over a concentration range of 0.5–100 ng/mL plasma. The quantification limit of the proposed method was more than 10 times lower than those of previously reported LC‐MS/MS methods. The novel method was successfully validated and applied to a pharmacokinetic study in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A selective, sensitive and rapid high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) method was developed and validated to determine metformin and glipizide simultaneously in human plasma using phenacetin as internal standard (IS). After one‐step protein precipitation of 200 μL plasma with methanol, metformin, glipizide and IS were separated on a Kromasil Phenyl column (4.6 × 150 mm, 5 µm) at 40°C with an isocratic mobile phase consisting of methanol–10 mmol/L ammonium acetate (75:25, v/v) at a flow rate of 0.35 mL/min. Electrospray ionization source was applied and operated in the positive mode. Multiple reaction monitoring using the precursor → product ion combinations of m/z 130 → m/z 71, m/z 446 → m/z 321 and m/z 180 → m/z 110 were used to quantify metformin, glipizide and IS, respectively. The linear calibration curves were obtained over the concentration ranges 4.10–656 ng/mL for metformin and 2.55–408 ng/mL for glipizide. The relative standard deviation of intra‐day and inter‐day precision was below 10% and the relative error of accuracy was between ?7.0 and 4.6%. The presented HPLC‐MS/MS method was proved to be suitable for the pharmacokinetic study of metformin hydrochloride and glipizide tablets in healthy volunteers after oral administration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A specific, sensitive and rapid method based on high performance liquid chromatography coupled to tandem mass spectrometry (HPLC‐MS/MS) was developed for the determination of pseudo‐ginsenoside GQ in human plasma. Liquid–liquid extraction was used to isolate the analyte from biological matrix followed by injection of the extracts onto a C8 column with isocratic elution. Detection was carried out on a triple quadrupole tandem mass spectrometer (API‐4000 system) in multiple reaction monitoring mode using negative electrospray ionization. The mobile phase consisted of methanol–10 mm ammonium acetate (90:10, v/v) and the flow rate was 0.3 mL/min. The method was validated over the concentration range of 5.0–5000.0 ng/mL for plasma. Inter‐ and intra‐day precisions (relative standard deviation) were all within 15% and the accuracy (relative error) was ≤9.4%. The lower limit of quantitation was 5.0 ng/mL. The pseudo‐ginsenoside GQ was stable after 8 h at room temperature, 24 h at autosampler and three freeze–thaw cycles (from ?30 to 25 °C). The method was successfully applied to the pharmacokinetic study of pseudo‐ginsenoside GQ in healthy Chinese volunteers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A sensitive, fast and specific method for the quantitation of pinocembrin in human plasma based on high‐performance liquid chromatography–tandem mass spectrometry (LC/MS/MS) was developed and validated. Clonazepam was used as the internal standard (IS). After solid‐phase extraction of 500 μL plasma, pinocembrin and the IS were separated on a Luna C8 column using the mobile phase composed of acetonitrile–0.3 mm ammonium acetate solution (65:35, v/v) at a flow rate of 0.25 mL/min in isocratic mode. The detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring via an electrospray ionization source in negative mode by AB SCIEX Qtrap 5500. The assay was linear from 1 to 400 ng/mL, with within‐ and between‐run accuracy (relative error) from ?1.82 to 0.54%, and within‐ and between‐run precision (CV) below 5.25%. The recovery was above 88% for the analyte at 1, 50 and 300 ng/mL. This analytical method was successful for the determination of pinocembrin in human plasma and applied to a pharmacokinetic study of pinocembrin injection in healthy volunteers after intravenous drip administration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
A simple and rapid high‐performance liquid chromatography–tandem mass spectrometric assay for determination of paclitaxel on rat dried blood spots was developed and validated. The extracted sample was chromatographed without further treatment using a reverse‐phase Oyster ODS3, 4.6 × 50 mm, 3 µm column with mass spectrometry detection. The mobile phase comprised of acetonitrile–water, 60:40 v/v, with a flow rate of 0.4 mL/min was used. The calibration was linear over the range 0.2–20 ng/mL. The limits of detection and quantification were 0.08 and 0.2 ng/mL, respectively. The intra‐ and inter‐day precision (CV%) and accuracy (relative error %) were less than 10 and 12%, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
In the current study, a simple, sensitive and rapid analytical method for the determination of dexamethasone was developed and applied to a pharmacokinetic study in nude mice. Using testosterone as an internal standard, a liquid chromatography–tandem mass spectrometry (LC‐MS/MS) approach after one‐step precipitation with acetonitrile was validated and used to determine the concentrations of dexamethasone in nude mice plasma. The method utilized a simple isocratic reverse phase separation over a Dionex C18 column with a mobile phase composed of acetonitrile–water (40:60, v/v). The analyte was detected by a triple quadrupole tandem mass spectrometer via electrospray and multiple reaction monitoring was employed to select both dexamethasone at m/z 393.0/147.1 and testosterone at m/z 289.5/97.3 in the positive ion mode. The calibration curves were linear (r >0.99) ranging from 2.5 to 500 ng/mL with a lower limit of quantitation of 2.5 ng/mL. The relative standard deviation ranged from 1.69 to 9.22% while the relative error ranged from ?1.92 to ?8.46%. This method was successfully applied to a preclinical pharmacokinetic study of dexamethasone and its pharmacokinetics was characterized by a two‐compartment model with first‐order absorption in female nude mice. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A rapid, sensitive and rugged solid‐phase extraction ultra performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS) method was developed for determination of paroxetine in human plasma. The procedure for sample preparation includes simple SPE extraction procedure coupled with Hypersil Gold C18 column (100 mm ? 2.1 mm, i.d., 1.9 μm) with isocratic elution at a flow‐rate of 0.350 mL/min and fluoxetine was used as the internal standard. The analysis was performed on a triple‐quadrupole tandem mass spectrometer by multiple reactions monitoring mode via electrospray ionization. Using 500 μL plasma, the methods were validated over the concentration range 0.050–16.710 ng/mL for paroxetine, with a lower limit of quantification of 0.050 ng/mL. The intra‐ and inter‐day precision and accuracy of the quality control samples were within 10.0%. The recovery was 69.2 and 74.4% for paroxetine and fluoxetine respectively. Total run time was only 1.9 min. The method was highly reproducible and gave peaks with excellent chromatography properties. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Leonurine (SCM‐198), an alkaloid from Herba Leonuri, has been suggested as a novel cardiovascular agent by pharmacology studies in preclinical stage. In present study, we report a simple, rapid and sensitive high‐performance liquid chromatography–tandem mass spectrometry method (HPLC‐MS/MS) for determination of leonurine in rat plasma. Leonurine and its internal standard (IS) n‐benzoyl‐l ‐arginine ethyl ester (BAEE) were extracted from plasma samples by one‐step protein precipitation with perchloric acid. Chromatographic separation was performed on an Agilent Zorbax SB‐C18 column (150 × 2.1 mm, 5 µm) using an isocratic elution with acetonitrile–ammonium acetate buffer (10 mm , pH 4.0; 25:75, v/v) as mobile phase at a flow rate of 0.2 mL/min. Analytes were detected by tandem mass spectrometry in positive electrospray ionization (ESI) mode using multiple reaction monitoring (MRM) with the transitions of m/z 312.3 → 181.1 for leonurine and m/z 307.2 → 104.6 for IS. The calibration curves were linear over the range of 4–256 ng/mL with a lower limit of quantitation (LLOQ) of 4 ng/mL. The intra‐ and inter‐day assay precision (as relative standard deviation) were <15%, except which at LLOQ were <20%, with accuracy in the range 98.73‐105.42%. The validated HPLC‐MS/MS method was successfully applied to the pharmacokinetic study in rats following oral administration of leonurine. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A rapid, selective and sensitive liquid chromatography/tandem mass spectrometry (LC‐MS/MS) method was developed and validated for determining bencycloquidium bromide (BCQB) in beagle dog plasma. The plasma sample was deproteinized with methanol which contained l‐ethyl‐bencycloquidium bromide as internal standard, and supernantant was assayed by LC‐MS/MS. The chromatographic separation was performed on a Phenomenex C18 column (100 × 2.0 mm, i.d., 3.0 μm) with a gradient programme mobile phase consisting of methanol and ammonium acetate (5 mm) containing 0.15% acetic acid and at a flow rate of 0.3 mL/min. Electrospray ionization in positive ion mode and selective reaction monitoring was used for the quantification of BCQB with a monitored transitions m/z 330.2 → 142.1 for BCQB and m/z 344.2 → 126.2 for IS. Validation results indicated that the lower limit of quantification was 0.05 ng/mL and the assay exhibited a linear range of 0.05–10.0 ng/mL and gave a correlation coefficient of 0.9998. The intra‐ and inter‐run precisions of the assay were 1.7–4.6 and 3.2–15.6%, respectively, and the intra‐ and inter‐day accuracies were ?8.8 to 1.1 and ?5.0 to 4.6%, respectively. The developed method was applied for the pharmacokinetic study of BCQB in beagle dogs following a single intranasal dose. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A rapid, selective and sensitive high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) method was developed to determine meloxicam in beagle dog plasma. Sample pretreatment involved a one‐step protein precipitation with methanol of 0.1 mL plasma. Analysis was performed on a Venusil ASB‐C18 column with mobile phase consisting of methanol–water (containing 0.1% formic acid) (75:25, v/v). The detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring mode via electrospray ionization source. Each plasma sample was chromatographed within 4.1 min. The linear calibration curves for meloxicam was obtained in the concentration range of 10.3–4.12 × 103 ng/mL (r ≥ 0.99). The intra‐ and inter‐day precisions (relative standard deviation) were ≤ 15%, and accuracy (relative error) was within ±7.3%. The method herein described was fully validated and successfully applied to the pharmacokinetic study of meloxicam tablets in beagle dog.  相似文献   

16.
A simple, sensitive, and selective liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the simultaneous quantification of olanzapine (OLZ) and its metabolite N‐desmethylolanzapine (DMO) in human plasma for therapeutic drug monitoring. Sample preparation was performed by one‐step protein precipitation with methanol. The analytes were chromatographed on a reversed‐phase YMC‐ODS‐AQ C18 Column (2.0 × 100 mm,3 µm) by a gradient program at a flow rate of 0.30 mL/min. Quantification was performed on a triple quadrupole tandem mass spectrometer via electrospray ionization in positive ion mode. The method was validated for selectivity, linearity, accuracy, precision, matrix effect, recovery and stability. The calibration curve was linear over the concentration range 0.2–120 ng/mL for OLZ and 0.5–50 ng/mL for DMO. Intra‐ and interday precisions for OLZ and DMO were <11.29%, and the accuracy ranged from 95.23 to 113.16%. The developed method was subsequently applied to therapeutic drug monitoring for psychiatric patients receiving therapy of OLZ tablets. The method seems to be suitable for therapeutic drug monitoring of patients undergoing therapy with OLZ and might contribute to prediction of the risk of adverse reactions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Cucurbitacin B (CuB), one of the most abundant forms of cucurbitacins, is a promising natural anticancer drug candidate. Although the anticancer activity of CuB has been well demonstrated, information regarding the pharmacokinetics is limited. A rapid, selective and sensitive UPLC‐MS/MS for CuB was developed and validated using hemslecin A (HeA) as internal standard (IS). Plasma samples were pre‐treated by liquid–liquid extraction with dichloromethane. Separation was achieved on a reversed‐phase C18 column (50 × 4.6 mm, 5 µm) at 35°C using isocratic elution with water–methanol (25:75, v/v) at a flow rate of 0.3 mL/min. The analytes were monitored by a triple quadrupole tandem mass spectrometer with positive electrospray ionization mode. The calibration curve was linear (r > 0.995) in a concentration range of 0.3–100 ng/mL with a limit of quantification of 0.3 ng/mL. Intra‐ and inter‐day accuracy and precision were validated by percentage relative error and relative standard deviation, respectively, which were both lower than the limit of 15%. This assay was successfully applied to a pharmacokinetic study of CuB in Wistar rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A sensitive, rapid and selective ultra‐performance liquid chromatography–tandem mass spectrometric (UPLC‐MS/MS) method was developed for the determination and pharmacokinetic study of domperidone in human plasma. Diphenhydramine was used as the internal standard. Plasma sample pretreatment involved a one‐step liquid–liquid extraction with a mixture of diethyl ether–dichloromethane (3:2, v/v). The analysis was carried out on an Acquity UPLCTM BEH C18 column. The mobile phase consisted of methanol–water containing 10 mmol/L ammonium acetate and 0.5% (v/v) formic acid (60:40, v/v). The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode via electrospray ionizationsource with positive mode. Each plasma sample was chromatographed within 2.1 min. The standard curves for domperidone were linear (r2 ≥ 0.99) over the concentration range of 0.030–31.5 ng/mL with a lower limit of quantification of 0.030 ng/mL. The intra‐ and inter‐day precision (relative standard deviation) values were not higher than 13% and accuracy (relative error) was from ?7.6 to 1.2% at three quality control levels. The method herein described was superior to previous methods and was successfully applied to the pharmacokinetic study of domperidone in healthy Chinese volunteers after oral administration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
A sensitive and selective liquid chromatography–tandem mass spectrometry method for the determination of pethidine in human plasma was developed and validated over the concentration range of 4–2000 ng/mL. After addition of ketamine as internal standard, liquid–liquid extraction was used to produce a protein‐free extract. Chromatographic separation was achieved on a 100 × 2.1 mm, 5 µm particle, AllureTM PFP propyl column, with 45:40:15 (v/v/v) acetonitrile–methanol–water containing 0.2% formic acid as mobile phase. The MS data acquisition was accomplished by multiple reactions monitoring mode with positive electrospray ionization interface. The lower limit of quantification was 4 ng/mL; for inter‐day and intra‐day tests, the precision (RSD) for the entire validation was less than 7%, and the accuracy was within 95.9–106.5%. The method is sensitive and simple, and was successfully applied to analysis of samples of clinical intoxication. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
A specific, sensitive and stable high‐performance liquid chromatographic–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the quantitative determination of methyl 3‐amino‐6‐methoxythieno [2,3‐b]quinoline‐2‐carboxylate (PU‐48), a novel diuretic thienoquinolin urea transporter inhibitor in rat plasma. In this method, the chromatographic separation of PU‐48 was achieved with a reversed‐phase C18 column (100 × 2.1 mm, 3 μm) at 35°C. The mobile phase consisted of acetonitrile and water with 0.05% formic acid added with a gradient elution at flow rate of 0.3 mL/min. Samples were detected with the triple‐quadrupole tandem mass spectrometer with multiple reaction monitoring mode via electrospray ionization source in positive mode. The retention time were 6.2 min for PU‐48 and 7.2 min for megestrol acetate (internal standard, IS). The monitored ion transitions were mass‐to‐charge ratio (m/z) 289.1 → 229.2 for PU‐48 and m/z 385.3 → 267.1 for the internal standard. The calibration curve for PU‐48 was linear over the concentration range of 0.1–1000 ng/mL (r2 > 0.99), and the lower limit of quantitation was 0.1 ng/mL. The precision, accuracy and stability of the method were validated adequately. The developed and validated method was successfully applied to the pharmacokinetic study of PU‐48 in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号