首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The optimal of damping out the oscillations of an elastically rectangular double-membrane system by means of point-wise actuators is solved analytically. The membrane is clamped along the boundaries. The motion of the system is initiated by given initial displacement and velocity conditions. The basic control problem is to minimize the deflection and the velocity of displacements at a specified time with the minimum expenditure of actuation energy. A quadratic performance functional is chosen as the cost functional which comprises the functionals of the deflection, velocity and the point-wise actuators. Necessary and sufficient conditions of optimality are investigated. The necessary conditions of optimality are obtained from a variational approach and formulated in the form of degenerate integrals which lead to explicit optimal control laws for the actuators. Numerical results are given for various problem parameters and the efficiency of the control mechanism is investigated.  相似文献   

2.
Shell type components and structures are very common in many mechanical and structural systems. In smart structural applications, piezolaminated plates and shells are commonly used. In this paper a finite element formulation is presented to model the static and dynamic response of laminated composite shells containing integrated piezoelectric sensors and actuators subjected to electrical, mechanical and thermal loadings. The formulation is based on the first order shear deformation theory and Hamilton's principle. In this formulation, the mass and stiffness of the piezo-layers have been taken into account. A nine-noded degenerated shell element is implemented for the analysis. The model is validated by comparing with existing results documented in the literature. A simple negative velocity feedback control algorithm coupling the direct and converse piezoelectric effects is used to actively control the dynamic response of an integrated structure through a closed control loop. The influence of the stacking sequence and position of sensors/actuators on the response of the laminated cylindrical shell is evaluated. Numerical results show that piezoelectric sensors/actuators can be used to control the shape and vibration of laminated composite cylindrical shell.  相似文献   

3.
The lanthanum-modified lead zirconate titanate (PLZT) actuator, which are capable of converting photonic energy to mechanical motion, have great potential in applications of remote structural vibration control of smart structures and machines. In this paper, a novel genetic algorithm based controlling algorithm for multi-modal vibration control of beam structures via photostrictive actuators is proposed. Two pairs of photostrictive actuators are laminated with the beams and the alternation of light irradiation is in accordance with the changing of the corresponding modal velocity direction. The modal force indexes for beams with different boundary conditions are derived and a binary-coded GA is used to optimize the locations and sizes of photostrictive actuators to maximize the modal force index and guarantee the overall modal force index induced by two pairs of photostrictive actuators is positive. The control effect of multiple vibration modes of beams under irradiation of set/variable light intensity is analyzed. Numerical results demonstrate that the method is robust and efficient, and the use of strategically positioned actuator patches can effectively control the first two bending modes that dominate the structural vibration.  相似文献   

4.
Optimal control theory is formulated and applied to damp out the vibrations of micro-beams where the control action is implemented using piezoceramic actuators. The use of piezoceramic actuators such as PZT in vibration control is preferable because of their large bandwidth, their mechanical simplicity and their mechanical power to produce controlling forces. The objective function is specified as a weighted quadratic functional of the dynamic responses of the micro-beam which is to be minimized at a specified terminal time using continuous piezoelectric actuators. The expenditure of the control forces is included in the objective function as a penalty term. The optimal control law for the micro-beam is derived using a maximum principle developed by Sloss et al. [J.M. Sloss, J.C. Bruch Jr., I.S. Sadek, S. Adali, Maximum principle for optimal boundary control of vibrating structures with applications to beams, Dynamics and Control: An International Journal 8 (1998) 355–375; J.M. Sloss, I.S. Sadek, J.C. Bruch Jr., S. Adali, Optimal control of structural dynamic systems in one space dimension using a maximum principle, Journal of Vibration and Control 11 (2005) 245–261] for one-dimensional structures where the control functions appear in the boundary conditions in the form of moments. The derived maximum principle involves a Hamiltonian expressed in terms of an adjoint variable as well as admissible control functions. The state and adjoint variables are linked by terminal conditions leading to a boundary-initial-terminal value problem. The explicit solution of the problem is developed for the micro-beam using eigenfunction expansions of the state and adjoint variables. The numerical results are given to assess the effectiveness and the capabilities of piezo actuation by means of moments to damp out the vibration of the micro-beam with a minimum level of voltage applied on the piezo actuators.  相似文献   

5.
ABSTRACT

In hybrid reluctance actuators, the achievable closed-loop system bandwidth is affected by the eddy currents and hysteresis in the ferromagnetic components and the mechanical resonance modes. Such effects must be accurately predicted to achieve high performance via feedback control. Therefore, a multiphysics electro-mechanical finite element model is proposed in this paper to compute the dynamics of a 2-DoF hybrid reluctance actuator. An electromagnetic simulation is adopted to compute the electromagnetic dynamics and the actuation torque, which is employed as input for a structural dynamic simulation computing the electro-mechanical frequency response function. For model validation, the simulated and measured frequency response plots are compared for two actuators with solid and laminated outer yoke, respectively. In both cases, the model accurately predicts the measurement results, with a maximum relative phase error of 1.7% between the first resonance frequency and 1 kHz and a relative error of 1.5% for the second resonance frequency..  相似文献   

6.
Rotary vane actuators as rotational drives provide rotational movements directly because they are constructed as a joint and actuator in one. So it is possible to pass on the disadvantageous transmission kinematics used with the so far usual differential cylinders at the arms of large manipulators. However, the use of hydraulic rotary vane actuators is associated with high internal oil leakage and/or high friction. Therefore, a nonlinear dynamic model for such an actuator, driving a rigid robot arm, as well as its nonlinear control are derived. To achieve tracking control a model based control law is set up using fundamental linear differential equations for the tracking error. The control law is implemented and tested on a testbed, the produced experimental results are presented. The same control algorithm can also be used to realize nonlinear disturbance attenuation for hydraulic rotary vane actuators via tracking control. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
This paper considers magnetothermoelastic behavior of a functionally graded material (FGM) hollow cylinder, placed in a uniform magnetic field, subjected to thermal and mechanical loads. Exact solutions for stresses and perturbations of the magnetic field vector in FGM hollow cylinders is determined by using the infinitesimal theory of magnetothermoelasticity. Numerical results indicate that the inhomogeneous constants presented in the present study are useful parameters from a design point of view in that it can be tailored for specific applications to control the stress and perturbation of magnetic field vector distributions. This research is helpful for the optimum design annular cylindrical FGM sensors/actuators.  相似文献   

8.
<正>This paper considers how to use a group of robots to sense and control a diffusion process.The diffusion process is modeled by a partial differential equation (PDE),which is a both spatially and temporally variant system.The robots can serve as mobile sensors,actuators,or both.Centroidal Voronoi Tessellations based coverage control algorithm is proposed for the cooperative sensing task.For the diffusion control problem,this paper considers spraying control via a group of networked mobile robots equipped with chemical neutralizers,known as smart mobile sprayers or actuators,in a domain of interest having static mesh sensor network for concentration sensing.This paper also introduces the information sharing and consensus strategy when using centroidal Voronoi tessellations algorithm to control a diffusion process.The information is shared not only on where to spray but also on how much to spray among the mobile actuators.Benefits from using CVT and information consensus seeking for sensing and control of a diffusion process are demonstrated in simulation results.  相似文献   

9.
We consider integer-restricted optimal control of systems governed by abstract semilinear evolution equations. This includes the problem of optimal control design for certain distributed parameter systems endowed with multiple actuators, where the task is to minimize costs associated with the dynamics of the system by choosing, for each instant in time, one of the actuators together with ordinary controls. We consider relaxation techniques that are already used successfully for mixed-integer optimal control of ordinary differential equations. Our analysis yields sufficient conditions such that the optimal value and the optimal state of the relaxed problem can be approximated with arbitrary precision by a control satisfying the integer restrictions. The results are obtained by semigroup theory methods. The approach is constructive and gives rise to a numerical method. We supplement the analysis with numerical experiments.  相似文献   

10.
The operation of sensors and actuators in engine control systems is always affected by errors, which are stochastic in nature. In this paper it is shown that, because of the non-linear interactions between engine performance and control laws in an open-loop engine control system, these errors can give rise to unexpected deviations of control variables, fuel consumption and emissions from the optimal values, which are not predictable in an elementary way.A model for vehicle performance evaluation on a driving cycle is presented, which provides the expected values of fuel consumption and emissions in the case of stochastic errors in sensors and actuators, utilizing only steady-state engine data.The stochastic model is utilized to obtain the optimal control laws; the resultant non-linear constrained minimization problem is solved by an Augmented Lagrangian approach, using a Quasi-Newton technique. The results of the stochastic optimization analysis indicate that significant reductions in performance degradation may be achieved with respect to the solutions provided by the classical deterministic approach.  相似文献   

11.
This paper presents an efficient hybrid optimization approach using a new coupling technique for solving the constrained optimization problems. This methodology is based on genetic algorithm, sequential quadratic programming and particle swarm optimization combined with a projected gradient techniques in order to correct the solutions out of domain and send them to the domain’s border. The established procedures have been successfully tested with some well known mathematical and engineering optimization problems, also the obtained results are compared with the existing approaches. It is clearly demonstrated that the solutions obtained by the proposed approach are superior to those of existing best solutions reported in the literature. The main application of this procedure is the location optimization of piezoelectric sensors and actuators for active control, the vibration of plates with some piezoelectric patches is considered. Optimization criteria ensuring good observability and controllability based on some main eigenmodes and residual ones are considered. Various rectangular piezoelectric actuators and sensors are used and two optimization variables are considered for each piezoelectric device: the location of its center and shape orientation. The applicability and effectiveness of the present methodological approach are demonstrated and the location optimization of multiple sensors and actuators are successfully obtained with some main modes and residual ones. The shape orientation optimization of sensors observing various modes as well as the local optimization of multiple sensors and actuators are numerically investigated. The effect of residual modes and the spillover reduction can be easily analyzed for a large number of modes and multiple actuators and sensors.  相似文献   

12.
薄膜衍射是一种新型的太空望远镜的成像方式,它具有轻质、易折叠与展开、光学成像精度高等许多优点,是当今太空望远镜技术的研究热点.该文针对一类薄膜衍射太空望远镜桁架结构的振动主动控制进行了研究,提出了一种基于绳索作动器的振动主动控制策略.首先建立了望远镜桁架结构的动力学模型,然后采用粒子群优化算法研究了绳索作动器的优化布置...  相似文献   

13.
This paper studied compressive postbuckling under thermal environments and thermal postbuckling due to a uniform temperature rise for a shear deformable laminated plate with piezoelectric fiber reinforced composite (PFRC) actuators based on a higher order shear deformation plate theory that includes thermo-piezoelectric effects. The material properties are assumed to be temperature-dependent and the initial geometric imperfection of the plate is considered. The compressive and thermal postbuckling behaviors of perfect, imperfect, symmetric cross-ply and antisymmetric angle-ply laminated plates with fully covered or embedded PFRC actuators are conducted under different sets of thermal and electric loading conditions. The results reveal that, the applied voltage usually has a small effect on the postbuckling load–deflection relationship of the plate with PFRC actuators in the compressive buckling case, whereas the effect of applied voltage is more pronounced for the plate with PFRC actuators, compared to the results of the same plate with monolithic piezoelectric actuators.  相似文献   

14.
In modern actuator technology dielectric elastomers are considered as new materials to realize smart actuators which are known as dielectric elastomer actuators (DEAs). In comparison to piezoceramics actuators, DEAs offer the possibility to achieve large deformations with low actuation forces. This property motivates the implementation as artificial muscles since the deformation-force behavior is similar. Other application fields are pumps, deformable surfaces in aerospace, robotics and haptic feedback. The present work introduces the fundamental concepts to describe the electromechanical coupling in the concept of continuum mechanics for finite deformations. As a benchmark a 3D sandwich actuator setup is taken into account to analyze the mechanical compression stability of the elastomer structure, see [1, 2]. This structure is also considered to study the influence of inhomogeneities in the deformation behavior. For this purpose piezoceramic and air inclusions are considered in the finite element mesh. As a last numerical example an elastomer tube with three pairs of electrodes is simulated numerically to motivate the use of dielectric elastomers as peristaltic pumps. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The paper investigates the motion planning of a suspended service robot platform equipped with ducted fan actuators. The platform consists of an RRT robot and a cable suspended swinging actuator that form a subsequent parallel kinematic chain and it is equipped with ducted fan actuators. In spite of the complementary ducted fan actuators, the system is under-actuated. The method of computed torques is applied to control the motion of the robot.The under-actuated systems have less control inputs than degrees of freedom. We assume that the investigated under-actuated system has desired outputs of the same number as inputs. In spite of the fact that the inverse dynamical calculation leads to the solution of a system of differential–algebraic equations (DAE), the desired control inputs can be determined uniquely by the method of computed torques.We use natural (Cartesian) coordinates to describe the configuration of the robot, while a set of algebraic equations represents the geometric constraints. In this modeling approach the mathematical model of the dynamical system itself is also a DAE.The paper discusses the inverse dynamics problem of the complex hybrid robotic system. The results include the desired actuator forces as well as the nominal coordinates corresponding to the desired motion of the carried payload. The method of computed torque control with a PD controller is applied to under-actuated systems described by natural coordinates, while the inverse dynamics is solved via the backward Euler discretization of the DAE system for which a general formalism is proposed. The results are compared with the closed form results obtained by simplified models of the system. Numerical simulation and experiments demonstrate the applicability of the presented concepts.  相似文献   

16.
A scheme for the optimal spatial placement of a limited number of sensors and actuators under a minimum energy requirement for the active control of flexible structures is proposed. The method is based on the interpretation of the functional relationship (transfer matrix/conrol influence matrix) between the actuators and modes of the structural system. It is shown that, from the form of the matrix, the controllability and observability of the system with respect to differing locations of the sensors and actuators can be established. The algorithm presented circumvents prevailing problems encountered in contemporary optimal control applications. In particular, and in order to enhance the results presented in this paper, numerical simulation for a prismatic beam subjected to horizontal random wind loads and a simply supported square plate modelled as a single degree of freedom system are given to illustrate the placement strategy.  相似文献   

17.
This paper describes high fidelity modeling and analysis of the opening and closing processes of butterfly valves driven by solenoid actuators using multiphysics models. The equations are derived and solved numerically. The variable of primary interest is the butterfly valve rotation angle. The coupled model for electromagnetics, fluid dynamics and mechanical dynamics are derived by making some simplifying assumptions. It is shown that the behavior of hydrodynamic torque plays an important role in the closing and opening processes. A discussion is presented with an explanation of the results and a comparison has been made for both the processes.  相似文献   

18.
This paper considers the problem of robust reliable H control for neural networks. The system has time-varying delays, parametric uncertainties and faulty actuators. The faulty actuators are considered as a disturbance signal to the system which is augmented with system disturbance input. Based on the LMI technique and the Lyapunov stability theory, a new set of sufficient conditions is obtained for the existence of the robust reliable H controller. An example is also presented illustrate the results.  相似文献   

19.
In this paper, the point-wise multipliers for the Herz-type Besov spaces are obtained, and the pseudo-differential operators are proved to be bounded in the Herz-type Besov spaces by using the point-wise multipliers. This paper was selected from Math. Appl., 2004, 17(1), 115–121  相似文献   

20.
修正的Bernstein-Durrmeyer算子的同时逼近   总被引:1,自引:0,他引:1  
本文的目的是证明修正的Bernstein-Durrmeyer算子同时逼近的正逆定理,在点态意义下,我们得到了一个同时逼近的等价特征刻画。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号