首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reduction at ambient temperature of each of the lithium benzamidinates [Li(L(1))(tmeda)] or [{Li(L(2))(OEt(2))(2)}(2)] with four equivalents of lithium metal in diethyl ether or thf furnished the brown crystalline [Li(3)(L(1))(tmeda)] (1) or [Li(thf)(4)][Li(5)(L(2))(2)(OEt(2))(2)] (2), respectively. Their structures show that in each the [N(R(1))C(R(3))NR(2)](3-) moiety has the three negative charges largely localised on each of N, N' and R = Aryl); a consequence is that the "aromatic" 2,3- and 5,6-CC bonds of R(3) approximate to being double bonds. Multinuclear NMR spectra in C(6)D(6) and C(7)D(8) show that 1 and 2 exhibit dynamic behaviour. [The following abbreviations are used: L(1) = N(SiMe(3))C(Ph)N(SiMe(3)); L(2) = N(SiMe(3))C(C(6)H(4)Me-4)N(Ph); tmeda = (Me(2)NCH(2)-)(2); thf = tetrahydrofuran.] This reduction is further supported by a DFT analysis.  相似文献   

2.
Selected homoleptic metal beta-diketiminates M(I)L and M(II)L2 [M(I) = Li or K, M(II) = Mg, Ca or Yb; L: L(Ph) = [N(SiMe3)C(Ph)]2CH, L(Bu(t)) = N(SiMe3)C(Ph)C(H)C(Bu(t))N(SiMe3), L* = [N(C6H3Pr(i)2-2,6)C(Me)]2CH] have been studied by cyclic voltammetry (CV). The primary reduction (E(p)red, the peak reduction potential measured vs. SCE in thf containing 0.2 M [NBu4][PF6] with a scan rate 100 mV s(-1) at a vitreous carbon electrode at ambient temperature) is essentially ligand-centred: E(p)red being ca. -2.2 V (LiL(Ph) and KL(Ph)) and -2.4 V [Mg(L(Ph))2, LiL(Bu(t)) and Ca(L(Ph))2], while LiL* is significantly more resistant to reduction (E(p)red = -3.1 V). These observations are consistent with the view that the two (L(Ph)) or single (L(Bu(t))) C-phenyl substituent(s), respectively, are available for -electron-delocalisation of the reduced species, whereas the N-aryl substituents of L* are unable to participate in such conjugation for steric reasons. The primary reduction process was reversible on the CV-time scale only for LiL(Bu(t)), Ca(L(Ph))2 and Yb(L(Ph))2. For the latter this occurs at a potential ca. 500 mV positive of Ca(L(Ph))2, consistent with the notion that the LUMO of Yb(L(Ph))2 has substantial metal character. The successive reversible steps, each separated by ca. 500 mV, indicate that there is strong electronic communication between the two ligands of Yb(L(Ph))2. The overall three-electron transfer sequence shows that the final reduction level corresponds to [Yb(II)(L(Ph))2-(L(Ph))3-]. DFT calculations on complexes Li(L(Ph))(OMe2)2 and Li2(L(Ph))(OMe2)3 showed that both HOMO and LUMO orbitals are only based on the ligand with a HOMO-LUMO gap of 4.21 eV. Similar calculations on a doubly reduced complex Yb[(mu-L(Ph))Li(OMe2)]2 demonstrated that there is a considerable Yb atomic orbital contribution to the HOMO and LUMO of the complex.  相似文献   

3.
The tetracyclic dilithio-Si,Si'-oxo-bridged bis(N,N'-methylsilyl-beta-diketiminates) 2 and 3, having an outer LiNCCCNLiNCCCN macrocycle, were prepared from [Li{CH(SiMe(3))SiMe(OMe)(2)}](infinity) and 2 PhCN. They differ in that the substituent at the beta-C atom of each diketiminato ligand is either SiMe(3) (2) or H (3). Each of and has (i) a central Si-O-Si unit, (ii) an Si(Me) fragment N,N'-intramolecularly bridging each beta-diketiminate, and (iii) an Li(thf)(2) moiety N,N'-intermolecularly bridging the two beta-diketiminates (thf = tetrahydrofuran). Treatment of [Li{CH(SiMe(3))(SiMe(2)OMe)}](8) with 2Me(2)C(CN)(2) yielded the amorphous [Li{Si(Me)(2)((NCR)(2)CH)}](n) [R = C(Me)(2)CN] (4). From [Li{N(SiMe(3))C(Bu(t))C(H)SiMe(3)}](2) (A) and 1,3- or 1,4-C(6)H(4)(CN)(2), with no apparent synergy between the two CN groups, the product was the appropriate (mu-C(6)H(4))-bis(lithium beta-diketiminate) 6 or 7. Reaction of [Li{N(SiMe(3))C(Ph)=C(H)SiMe(3)}(tmeda)] and 1,3-C(6)H(4)(CN)(2) afforded 1,3-C(6)H(4)(X)X' (X =CC(Ph)N(SiMe3)Li(tmeda)N(SiMe3)CH; X' = CN(SiMe3)Li(tmeda)NC(Ph)=C(H)SiMe3)(9). Interaction of A and 2[1,2-C(6)H(4)(CN)(2)] gave the bis(lithio-isoindoline) derivative [C6H4C(=NH)N{Li(OEt2)}C=C(SiMe3)C(Bu(t))=N(SiMe3)]2 (5). The X-ray structures of 2, 3, 5 and 9 are presented, and reaction pathways for each reaction are suggested.  相似文献   

4.
The compounds [K((mu-N(SiMe3)C(Ph))2CH)(thf)2]infinity 1, [K(mu-N(SiMe3)C(Ph)C(H)C(Ph)NH)L]2 [L = (thf)2 2, tmen 3], [K(mu-NSi(Me)2C(Ph)C(H)C(Ph)N)(thf)3]2 4 and [K(N(H)C(Ph))2CH](thf)0.5 5 have been prepared from K[(N(SiMe3)C(Ph))2CH] and the X-ray structures of 1-4 are reported.  相似文献   

5.
The following crystalline, or microcrystalline (4), metal diamides have been prepared under mild conditions from the N,N'-disubstituted 1,2-diaminobenzene [{N(R)H}2C6H4-1,2] (H(2): R = CH2But; H2L': R = SiMe2NPri2): [Li(thf)(mu-L)(mu-I)Ca(thf)] (1), [Li(thf)4][{Zn(mu-L)}3(mu3-Cl)] (2), [Li(thf)4][Zn(L)2] (3), [{Li(OEt2)(mu-L)Zn}2(mu-L)] (4), [Li(OEt2)(mu-L)Zn(mu-L)Zn(LH)] (5) and [Li(thf)(mu-L')Li(thf)2] (6). Compounds 1-5 were obtained from [Li2(L)] and CaI2 (1) or ZnCl2 (2-5) while 6 was derived from H2(L') and LiBun. Compound 5 was isolated as a very minor by-product from the synthesis of 4, and is assumed to have been formed therefrom by adventitious hydrolysis. The green salt 3 was paramagnetic with the negative charge uniformly delocalised on the two ligands. The other compounds were colourless and diamagnetic. The X-ray structures of each, except 4, are reported and discussed.  相似文献   

6.
Zhou M  Gong T  Qiao X  Tong H  Guo J  Liu D 《Inorganic chemistry》2011,50(5):1926-1930
Treatment of the appropriate lithium or sodium 2,4-N,N'-disubstituted 1,3,5-triazapentadienate [RNC(R')NC(R')N(SiMe(3))M](2) (R = Ph, 2,6-(i)Pr(2)-C(6)H(3)(Dipp) or SiMe(3); R' = NMe(2) or 1-piperidino; M = Li or Na) with one or half equivalent portion of MgBr(2)(THF)(2) in Et(2)O under mild conditions furnishes in good yield the first structurally characterized molecular magnesium 2,4-N,N'-disubstituted 1,3,5-triazapentadienates [DippNC(NMe(2))NC(NMe(2))N(SiMe(3))MgBr](2) (1), [{RNC(R')NC(R')N(SiMe(3))}(2)Mg] (R = Ph, R' = NMe(2) 2; R = Ph, R' = 1-piperidino 3; R = SiMe(3), R' = 1-piperidino 4). The solid-state structure of 1 is dimeric and those of 2, 3, and 4 are monomeric. The ligand backbone NCNCN in 1 adopts a W-shaped configuration, while in 2, 3 and 4 adopts a U-shaped configuration.  相似文献   

7.
This paper describes the synthesis and selected reactions of a series of crystalline mono(beta-diiminato)yttrium chlorides , , , , , , and . The X-ray structure of each has been determined, as well as of [YCl()(2)] (), [Y()(2)OBu(t)] () and [Y{CH(SiMe(3))(2)}(thf)(mu-Cl)(2)Li(OEt(2))(2)(mu-Cl)](2) (). The N,N'-kappa(2)-beta-diiminato ligands were [{N(R)C(Me)}(2)CH](-) [R = C(6)H(4)Pr(i)-2 (); R = C(6)H(4)Bu(t)-2 (); R = C(6)H(3)Pr(i)(2)-2,6 ()], [{N(SiMe(3))C(Ph)}(2)CH)](-) () and [{N(C(6)H(3)Pr(i)(2)-2,6)C(H)}(2)CPh](-) (). Equivalent portions of Li[L(x)] and YCl(3) in Et(2)O under mild conditions yielded [Y(mu-Cl)(L(x))(mu-Cl)(2)Li(OEt(2))(2)](2) [L(x) = () or ()] and [Y(mu-Cl)()(mu-Cl)Li(OEt(2))(2)(mu-Cl)](2) () or its thf (instead of Et(2)O) equivalent . Each of the Li(OEt(2))(2)Cl(2) moieties is bonded in a terminal () or bridging () mode with respect to the two Y atoms; the difference is attributed to the greater steric demand of than or . Under slightly more forcing conditions, YCl(3) and Li() (via) gave the lithium-free complex [YCl(2)()(thf)(2)] (). Two isoleptic compounds and (having in place of in , and , respectively) were obtained from YCl(3) and an equivalent portion of K[] and Na[], respectively; under the same conditions using Na[], the unexpected product was [YCl()(2)] () (i.e. incorporating only one half of the YCl(3)). A further unusual outcome was in the formation of from and 2 Li[CH(SiMe(3))(2)]. Compound [Y(){N(H)C(6)H(3)Pr(i)(2)-2,6}(thf)(mu(3)-Cl)(2)K](2).4Et(2)O (), obtained from and K[N(H)C(6)H(3)Pr(i)(2)-2,6], is noteworthy among group 3 or lanthanide metal (M) compounds for containing MClKCl (M = Y) moieties.  相似文献   

8.
N-Trimethylsilyl o-methylphenyldiphenylphosphinimine, (o-MeC6H4)PPh2=NSiMe3 (1), was prepared by reaction of Ph2P(Br)=NSiMe3 with o-methylphenyllithium. Treatment of 1 with LiBun and then Me3SiCl afforded (o-Me3SiCH2C6H4)PPh2=NSiMe3 (2). Lithiations of both 1 and 2 with LiBu(n) in the presence of tmen gave crystalline lithium complexes [Li{CH(R)C6H4(PPh(2=NSiMe3)-.tmen](3, R = H; 4, R = SiMe3). From the mother liquor of 4, traces of the tmen-bridged complex [Li{CH(SiMe3)C6H4(PPh2=NSiMe3)-2}]2(mu-tmen) (5) were obtained. Reaction of 2 with LiBun in Et2O yielded complex [Li{CH(SiMe3)C6H4(PPh2=NSiMe3)-2}.OEt2] (6). Reaction of lithiated with Me2SiCl2 in a 2:1 molar ratio afforded dimethylsilyl-bridged compound Me2Si[CH2C6H4(PPh2=NSiMe3)-2]2 (7). Lithiation of 7 with two equivalents of LiBun in Et2O yielded [Li2{(CHC6H4(PPh2=NSiMe3)-2)2SiMe2}.0.5OEt2](8.0.5OEt2). Treatment of 4 with PhCN formed a lithium enamide complex [Li{N(SiMe3)C(Ph)CHC6H4(PPh2=NSiMe3)-2}.tmen] (9). Reaction of two equivalents of 5 with 1,4-dicyanobenzene gave a dilithium complex [{Li(OEt2)2}2(1,4-{C(N(SiMe3)CHC6H4(PPh2=NSiMe3)-2}2C6H4)] (10). All compounds were characterised by NMR spectroscopy and elemental analyses. The structures of compounds 2, 3, 5, 6 and 9 have been determined by single crystal X-ray diffraction techniques.  相似文献   

9.
Reaction of [Ln(CH(2)SiMe(3))(3)(thf)(2)] (Ln=Y, Yb, and Lu) with one equivalent of Me(2)Si(C(5)Me(4)H)NHR' (R'=Ph, 2,4,6-Me(3)C(6)H(2), tBu) affords straightforwardly the corresponding half-sandwich rare-earth metal alkyl complexes [{Me(2)Si(C(5)Me(4))(NR')}Ln(CH(2)SiMe(3))(thf)(n)] (1: Ln = Y, R' = Ph, n=2; 2: Ln = Y, R' = C(6)H(2)Me(3)-2,4,6, n=1; 3: Ln = Y, R' = tBu, n=1; 4: Ln = Yb, R' = Ph, n=2; 5: Ln = Lu, R' = Ph, n=2) in high yields. These complexes, especially the yttrium complexes 1-3, serve as excellent catalyst precursors for the catalytic addition of various primary and secondary amines to carbodiimides, efficiently yielding a series of guanidine derivatives with a wide range of substituents on the nitrogen atoms. Functional groups such as C[triple chemical bond]N, C[triple chemical bond]CH, and aromatic C--X (X: F, Cl, Br, I) bonds can survive the catalytic reaction conditions. A primary amino group can be distinguished from a secondary one by the catalyst system, and therefore, the reaction of 1,2,3,4-tetrahydro-5-aminoisoquinoline with iPrN==C==NiPr can be achieved stepwise first at the primary amino group to selectively give the monoguanidine 38, and then at the cyclic secondary amino unit to give the biguanidine 39. Some key reaction intermediates or true catalyst species, such as the amido complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y(NEt(2))(thf)(2)] (40) and [{Me(2)Si(C(5)Me(4))(NPh)}Y(NHC(6)H(4)Br-4)(thf)(2)] (42), and the guanidinate complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrNC(NEt(2))(NiPr)}(thf)] (41) and [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrN}C(NC(6)H(4)Br-4)(NHiPr)}(thf)] (44) have been isolated and structurally characterized. Reactivity studies on these complexes suggest that the present catalytic formation of a guanidine compound proceeds mechanistically through nucleophilic addition of an amido species, formed by acid-base reaction between a rare-earth metal alkyl bond and an amine N--H bond, to a carbodiimide, followed by amine protonolysis of the resultant guanidinate species.  相似文献   

10.
Tetraphenylborate salts of solvated pentafluorophenyllanthanoid(II) cations [Ln(C(6)F(5))(thf)(n)](+) (Ln=Eu, n=6 (1); Ln=Yb, n=5 (2)) were readily synthesized in high yield by reactions of ytterbium or europium with HgPh(C(6)F(5)) and Me(3)NHBPh(4) in THF. The structures of 1.THF and 2 confirmed the existence of well-separated ions and both 1 and 2 show notable thermal stability at room temperature. The cation in 2 was also observed in the remarkable mixed-valent complex [Yb(II)(C(6)F(5))(thf)(5)][Yb(III)(C(6)F(5))(2)[N(SiMe(3))(2)](2)] (3), fortuitously isolated in low yield from a reaction of ytterbium metal, HgPh(C(6)F(5)), and HN(SiMe(3))(2) in THF, and which additionally has an unusual bis(pentafluorophenyl)bis[bis(trimethylsilyl)amido)]ytterbate(III) anion. (171)Yb-(19)F coupling has been observed in the low-temperature (171)Yb NMR spectra of 2 and [Yb(C(6)F(5))(2)(thf)(4)].  相似文献   

11.
A series of trivalent mono- and tris(ligand) lanthanide complexes of a sulfur-bridged binaphthol ligand [1,1'-S(2-HOC(10)H(4)Bu(t)(2)-3,6)(2)] H(2)L(SN), have been prepared and characterised both structurally and photophysically. The H(2)L(SN) ligand provides an increased steric bulk and offers an additional donor atom (sulfur) as compared with 1,1'-binaphthol (BINOL), a ligand commonly used to complex Lewis acidic lanthanide catalysts. Reaction of the diol H(2)L(SN) with [Sm[N(SiMe(3))(2)](3)] affords silylamido- and amino- derivatives [Sm(L(SN))[N(SiMe(3))(2)][HN(SiMe(3))(2)]] and the crystallographically characterised [Sm(L(SN))[N(SiMe(3))(2)](thf)(2)] with different degrees of structural rigidity, depending on the presence of coordinating solvents. The binaphthyl groups of the L(SN) ligand act as sensitisers of the metal centred emission, which is observed for the Eu(III) and Sm(III) complexes studied. We have therefore sought to use emission spectroscopy as a non-invasive technique to monitor a monomer-dimer equilibrium in these complexes. A dramatic difference between the emission properties of the unreactive dimeric Sm(III) aryloxide complex, the solvated monomeric analogues and the amido adduct demonstrated the potential use of such a technique. For a few representative lanthanides (Ln = Sm, Eu and Y) the reaction of the dilithium salt Li(2)L(SN) with either [Ln[N(SiMe(3))(2]3)] or [LnCl(3)(thf)(3)] affords only the homoleptic complex [Li(S)(3)][LnL(SN)(3)](S = thf or diethyl ether); we report the structural characterisation of the Sm complex. However, the reactions of this dipotassium salt K(2)L(SN) with [Sm[N(SiMe(3))(2)](3)] or [SmCl(3)(thf)(3)] give only [SmL(SN)N(SiMe(3))(2)], or intractable mixtures respectively, in which no (tris)binaphtholate is observed. The only isolable lanthanide-L(SN) halide adduct so far is [YbL(SN)I(thf)].  相似文献   

12.
The reaction of phosphanido complexes [Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)(PPh(2))] [L = CO (1), CNXylyl (2)] with early transition metal halides in high oxidation states has been carried out. New bimetallic niobocene complexes [{Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)}(μ-PPh(2))(MCl(5))] [M = Nb, L = CO (3), L = CNXylyl (4); M = Ta, L = CO (5), L = CNXylyl (6)] have been successfully synthesized by the reaction with [MCl(5)](2) (M = Nb or Ta). In a similar way [{Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)}(μ-PPh(2))(MCl(4))] [M = Ti, L = CO (13), CNXylyl (14); M = Zr, L = CO (15), CNXylyl (16)] were synthesized using MCl(4) (M = Ti or Zr). Solutions of complexes 4-6 in chloroform produced new ionic derivatives [Nb(η(5)-C(5)H(4)SiMe(3))(2)(P(H)Ph(2))(L)] [MCl(6)] [M = Nb, L = CO (7), L = CNXylyl (8); M = Ta, L = CO (9), L = CNXylyl (10)]. Ionic complexes [Nb(η(5)-C(5)H(4)SiMe(3))(2)(P(Cl)Ph(2))(L)] [NbCl(4)O(thf)] [L = CO (11), CNXylyl (12)] were formed from solutions in thf - rapidly in the case of 3 but more slowly for 4. New heterometallic complexes [Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)(μ-PPh(2)){(Ti(η(5)-C(5)R(5))Cl(3)}] [R = H, L = CO (17), CNXylyl (18); R = CH(3), L = CO (19), CNXylyl (20)] were synthesized by the reaction of 1 or 2 with [Ti(η(5)-C(5)R(5))Cl(3)] (R = H or CH(3)). All of these compounds were characterized by IR and multinuclear NMR spectroscopy, and the molecular structures of 9 and 12 were determined by single-crystal X-ray diffraction.  相似文献   

13.
The reactions between cis-[M(C(6)F(5))(2)(PPh(2)CtriplebondCR)(2)] (M=Pt, Pd; R=Ph, tBu, Tol 2, 3) or cis-[Pt(C(6)F(5))(2)(PPh(2)CtriplebondCR)(PPh(2)CtriplebondCtBu)] (R=Ph 4, Tol 5) and cis-[Pt(C(6)F(5))(2)(thf)(2)] 1 have been investigated. Whereas [M](PPh(2)CtriplebondCtBu)(2) ([M]=cis-M(C(6)F(5))(2)) is inert towards 1, the analogous reactions starting from [M](PPh(2)CtriplebondCR)(2) or [Pt](PPh(2)CtriplebondCR)(PPh(2)CtriplebondCtBu) (R=Ph, Tol) afford unusual binuclear species [Pt(C(6)F(5))(S)mu-[C(R')dbondC(PPh(2))C(PPh(2))doublebondC(R)(C(6)F(5))]M(C(6)F(5))(2)] (R=R'=Ph, Tol, M=Pt 6 a,c, M=Pd 7 a,c; M=Pt, R'=tBu, R=Ph 8, Tol 9) containing a bis(diphenylphosphanyl)butadienyl bridging ligand formed by an unprecedented sequential insertion reaction of two P-coordinated PPh(2)CtriplebondCR ligands into a PtbondC(6)F(5) bond. Although in solution the presence of coordinated solvent S (S=(thf)(x)(H(2)O)(y)) in 6, 7 is suggested by NMR spectroscopy, X-ray diffraction analyses of different crystals of the mixed complex [Pt(C(6)F(5))mu-[C(tBu)doublebondC(PPh(2))C(PPh(2))doublebondC(Tol)(C(6)F(5))]Pt(C(6)F(5))(2)] 9 unequivocally establish that in the solid state the steric crowding of the new diphenylbutadienyl ligand formed stabilizes an unusual coordinatively unsaturated T-shaped 3-coordinated platinum(II) center. Structure determinations of the mononuclear precursors cis-[Pt(C(6)F(5))(2)(PPh(2)CtriplebondCR)(2)] (R=Ph, tBu, Tol) have been carried out to evaluate the factors affecting the insertion processes. The reactions of the platinum complexes 6 towards neutral ligands (L=CO, py, PPh(2)H, CNtBu) in a 1:1 molar ratio afford related diplatinum derivatives 10-13, whereas treatment with CNtBu (1:2 molar ratio) or 2,2'-bipy (1:1 molar ratio) results in the opening of the chelating ring to give cis,cis-[Pt(C(6)F(5))(L)(2)mu-[1-kappaC(1):2-kappaPP'-C(R)doublebondC(PPh(2))C(PPh(2))doublebondC(R)(C(6)F(5))]Pt(C(6)F(5))(2)] (14, 15). The unsaturated or solvento complexes are unstable in solution evolving firstly, through an unexpected formal 4-1 R (Ph, Tol) migration, to the intermediate diphosphanylbutadienyl isomer derivatives [Pt(C(6)F(5))(S)mu-[C(C(6)F(5))doublebondC(PPh(2))C(PPh(2))doublebondC(R)(2)]M(C(6)F(5))(2)] (16, 18) (X-ray, R=Ph, M=Pt) and, finally, to 1-pentafluorophenyl-2,3-bis(diphenylphosphanyl)naphthalene mononuclear complexes (17, 19) by annulation of a phenyl or tolyl group.  相似文献   

14.
The preparation of a series of extremely bulky secondary amines, Ar*N(H)SiR(3) (Ar* = C(6)H(2){C(H)Ph(2)}(2)Me-2,6,4; R(3) = Me(3), MePh(2) or Ph(3)) is described. Their deprotonation with either LiBu(n), NaH or KH yields alkali metal amide complexes, several monomeric examples of which, [Li(L){N(SiMe(3))(Ar*)}] (L = OEt(2) or THF), [Na(THF)(3){N(SiMe(3))(Ar*)}] and [K(OEt(2)){N(SiPh(3))(Ar*)], have been crystallographically characterised. Reactions of the lithium amides with germanium, tin or lead dichloride have yielded the first structurally characterised two-coordinate, monomeric amido germanium(II) and tin(II) chloride complexes, [{(SiR(3))(Ar*)N}ECl] (E = Ge or Sn; R = Me or Ph), and a chloride bridged amido-lead(II) dimer, [{[(SiMe(3))(Ar*)N]Pb(μ-Cl)}(2)]. DFT calculations on [{(SiMe(3))(Ar*)N}GeCl] show its HOMO to exhibit Ge lone pair character and its LUMO to encompass its Ge based p-orbital. A series of bulky amido silicon(IV) chloride complexes have also been prepared and several examples, [{(SiR(3))(Ar*)N}SiCl(3)] (R(3) = Me(3), MePh(2)) and [{(SiMe(3))(Ar*)N}SiHCl(2)], were crystallographically characterised. The sterically hindered group 14 complexes reported in this study hold significant potential as precursors for kinetically stabilised low oxidation state and/or low coordination number group 14 complexes.  相似文献   

15.
2-Phosphanylethylcyclopentadienyl lithium compounds, Li[C(5)R'(4)(CH(2))(2)PR(2)] (R = Et, R' = H or Me, R = Ph, R' = Me), have been prepared from the reaction of spirohydrocarbons C(5)R'(4)(C(2)H(4)) with LiPR(2). C(5)Et(4)HSiMe(2)CH(2)PMe(2), was prepared from reaction of Li[C(5)Et(4)] with Me(2)SiCl(2) followed by Me(2)PCH(2)Li. The lithium salts were reacted with [RhCl(CO)(2)](2), [IrCl(CO)(3)] or [Co(2)(CO)(8)] to give [M(C(5)R'(4)(CH(2))(2)PR(2))(CO)] (M = Rh, R = Et, R' = H or Me, R = Ph, R' = Me; M = Ir or Co, R = Et, R' = Me), which have been fully characterised, in many cases crystallographically as monomers with coordination of the phosphorus atom and the cyclopentadienyl ring. The values of nu(CO) for these complexes are usually lower than those for the analogous complexes without the bridge between the cyclopentadienyl ring and the phosphine, the exception being [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (Cp' = C(5)Me(4)), the most electron rich of the complexes. [Rh(C(5)Et(4)SiMe(2)CH(2)PMe(2))(CO)] may be a dimer. [Co(2)(CO)(8)] reacts with C(5)H(5)(CH(2))(2)PEt(2) or C(5)Et(4)HSiMe(2)CH(2)PMe(2) (L) to give binuclear complexes of the form [Co(2)(CO)(6)L(2)] with almost linear PCoCoP skeletons. [Rh(Cp'(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are active for methanol carbonylation at 150 degrees C and 27 bar CO, with the rate using [Rh(Cp'(CH(2))(2)PPh(2))(CO)] (0.81 mol dm(-3) h(-1)) being higher than that for [RhI(2)(CO)(2)](-) (0.64 mol dm(-3) h(-1)). The most electron rich complex, [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (0.38 mol dm(-3) h(-1)) gave a comparable rate to [Cp*Rh(PEt(3))(CO)] (0.30 mol dm(-3) h(-1)), which was unstable towards oxidation of the phosphine. [Rh(Cp'(CH(2))(2)PEt(2))I(2)], which is inactive for methanol carbonylation, was isolated after the methanol carbonylation reaction using [Rh(Cp'(CH(2))(2)PEt(2))(CO)]. Neither of [M(Cp'(CH(2))(2)PEt(2))(CO)] (M = Co or Ir) was active for methanol carbonylation under these conditions, nor under many other conditions investigated, except that [Ir(Cp'(CH(2))(2)PEt(2))(CO)] showed some activity at higher temperature (190 degrees C), probably as a result of degradation to [IrI(2)(CO)(2)](-). [M(Cp'(CH(2))(2)PEt(2))(CO)] react with MeI to give [M(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] (M = Co or Rh) or [Ir(Cp'(CH(2))(2)PEt(2))Me(CO)]I. The rates of oxidative addition of MeI to [Rh(C(5)H(4)(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are 62 and 1770 times faster than to [Cp*Rh(CO)(2)]. Methyl migration is slower, however. High pressure NMR studies show that [Co(Cp'(CH(2))(2)PEt(2))(CO)] and [Cp*Rh(PEt(3))(CO)] are unstable towards phosphine oxidation and/or quaternisation under methanol carbonylation conditions, but that [Rh(Cp'(CH(2))(2)PEt(2))(CO)] does not exhibit phosphine degradation, eventually producing inactive [Rh(Cp'(CH(2))(2)PEt(2))I(2)] at least under conditions of poor gas mixing. The observation of [Rh(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] under methanol carbonylation conditions suggests that the rhodium centre has become so electron rich that reductive elimination of ethanoyl iodide has become rate determining for methanol carbonylation. In addition to the high electron density at rhodium.  相似文献   

16.
Lithium aluminates Li[Al(O-2,6-Me(2)C(6)H(3))R'(3)] (R' = Et, Ph) react with the μ(3)-alkylidyne oxoderivative ligands [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CR)] [R = H (1), Me (2)] to afford the aluminum-lithium-titanium cubane complexes [{R'(3)Al(μ-O-2,6-Me(2)C(6)H(3))Li}(μ(3)-O)(3){Ti(η(5)-C(5)Me(5))}(3)(μ(3)-CR)] [R = H, R' = Et (5), Ph (7); R = Me, R' = Et (6), Ph (8)]. Complex 7 evolves with the formation of a lithium dicubane species and a Li{Al(μ-O-2,6-Me(2)C(6)H(3))Ph(3)}(2)] unit.  相似文献   

17.
A trinuclear Yb beta-diketiminato cluster [(YbL)3(THF)] (1) (L = {N(SiMe3)C(Ph)}2CH), containing L-1 and L-3 as well as Yb(II) and Yb(III) centers, was obtained by treatment of [YbL2] with Yb-naphthalene and was characterized by X-ray crystallography. The electron distribution in 1 and the Yb(II)/L-2 complex [Yb{(mu-L)Li(THF)}2] (2) was analyzed by DFT and ONIOM (QM/MM) calculations.  相似文献   

18.
In combination with EtAlCl(2) (Mo : Al = 1 : 15) the imido complexes [MoCl(2)(NR)(NR')(dme)] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (1); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (3); R = R' = Bu(t) (4); dme = 1,2-dimethoxyethane) and [Mo(NHBu(t))(2)(NR)(2)] (R = 2,6-Pr(i)(2)-C(6)H(3) (5); R = Bu(t) (6)) each show moderate TON, activity, and selectivity for the catalytic dimerisation of ethylene, which is influenced by the nature of the imido substituents. In contrast, the productivity of [MoCl(2)(NPh)(2)(dme)] (2) is low and polymerisation is favoured over dimerisation. Catalysis initiated by complexes 1-4 in combination with MeAlCl(2) (Mo : Al = 1 : 15) exhibits a significantly lower productivity. Reaction of complex 5 with EtAlCl(2) (2 equiv.) gives rise to a mixture of products, while addition of MeAlCl(2) affords [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)]. Treatment of 6 with RAlCl(2) (2 equiv.) (R = Me, Et) yields [Mo({μ-N-Bu(t)}AlCl(2))(2)] (7) in both cases. Imido derivatives 1 and 3 react with Me(3)Al and MeAlCl(2) to form the bimetallic complexes [MoMe(2)(N{R}AlMe(2){μ-Cl})(NR')] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (8); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (10)) and [MoMe(2)(N{R}AlCl(2){μ-Cl})(NR')] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (9); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (11)), respectively. Exposure of complex 8 to five equivalents of thf or PMe(3) affords the adducts [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)(L)] (L = thf (12); L = PMe(3) (13)), while reaction with NEt(3) (5 equiv.) yields [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)]. The molecular structures of complexes 5, 9 and 11 have been determined.  相似文献   

19.
A family of rare earth metal bis(amide) complexes bearing monoanionic amidinate [RC(N-2,6-Me(2)C(6)H(3))(2)](-) (R = cyclohexyl (Cy), phenyl (Ph)) as ancillary ligands were synthesized and characterized. One-pot salt metathesis reaction of anhydrous LnCl(3) with one equivalent of amidinate lithium [RC(N-2,6-Me(2)C(6)H(3))(2)]Li, following the introduction of two equivalents of NaN(SiMe(3))(2) in THF at room temperature afforded the neutral and unsolvated mono(amidinate) rare earth metal bis(amide) complexes [RC(N-2,6-Me(2)C(6)H(3))(2)]Y[N(SiMe(3))(2)](2) (R = Cy (1); R = Ph (2)), and the "ate" mono(amidinate) rare earth metal bis(amide) complex [CyC(N-2,6-Me(2)C(6)H(3))(2)]Lu[N(SiMe(3))(2)](2)(μ-Cl)Li(THF)(3) (3) in 61-72% isolated yields. These complexes were characterized by elemental analysis, NMR spectroscopy, FT-IR spectroscopy, and X-ray single crystal diffraction. Single crystal structural determination revealed that the central metal in complexes 1 and 2 adopts a distorted tetrahedral geometry, and in complex 3 forms a distorted trigonal bipyramidal geometry. In the presence of AlMe(3), and in combination with one equimolar amount of [Ph(3)C][B(C(6)F(5))(4)], complexes 1 and 2 showed high activity towards isoprene polymerization to give high molecular weight polyisoprene (M(n) > 10(4)) with good cis-1,4 selectivity (>90%).  相似文献   

20.
Synthetic routes to vanadium(V)-phosphinimide derivatives are addressed. Initial synthetic efforts afforded the known compound formulated as VCl(2)(NPPh(3))(3) which was crystallographically determined to be the salt [VCl(NPPh(3))(3)]Cl (1). Reactions of the vanadium-imide precursors VCl(3)(NAr) (Ar = Ph, C(6)H(3)-2,6-iPr(2)) with R(3)PNSiMe(3) (R = Ph, iPr, tBu) afforded VCl(2)(NPh)(NPPh(3)) (4), VCl(2)(NPh)(NPiPr(3)) (5), VCl(2)(NPh)(NPtBu(3)) (6), VCl(2)(NC(6)H(3)-2,6-iPr(2))(NPPh(3)) (7), VCl(2)(NC(6)H(3)-2,6-iPr(2))(NPiPr(3)) (8), and VCl(2)(NC(6)H(3)-2,6-iPr(2))(NPtBu(3)) (9) in yields ranging from 72% to 84%. Subsequent alkylation or arylation reactions resulted in VMe(2)(NC(6)H(3)-2,6-iPr(2))(NPtBu(3)) (10), VPh(2)(NPh)(NPtBu(3)) (11), VPh(2)(NC(6)H(3)-2,6-iPr(2))(NPiPr(3)) (12), and VPh(2)(NC(6)H(3)-2,6-iPr(2))(NPtBu(3)) (13) while substitution reactions with Li[N(SiMe(3))(2)] and Li[SBn] gave VCl(N(SiMe(3))(2))(NPh)(NPtBu(3)) (14) and V(SBn)(2)(NC(6)H(3)-2,6-iPr(2))(NPtBu(3)) (15) in yields ranging from 40% to 49% yield. Polarization of the N-P phosphinimide bond and V-N multiple bond character are evidenced by crystallographic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号