首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
With an undoped YVO4 crystal as a Raman shifter, we substantially improved the reliability and the output performance of an actively Q-switched 1176-nm Nd:YVO4 Raman laser. With an incident pump power of 18.7 W, the average power is greater than 2.6 W at 80 kHz. The pulse width of the pulse envelope is shorter then 5 ns with mode-locked modulation. With an incident pump power of 12.7 W, the pulse energy and peak power is higher than 43 μJ and 14 kW at 40 kHz. PACS 42.55.Ye; 42.55.Xi; 42.60.Gd  相似文献   

2.
We have demonstrated an efficient diode-pumped passively Q-switched Nd:YVO4 laser at 1342 nm by using an uncoated Co2+:LaMgAl11O19 (Co2+:LMA) crystal as the saturable absorber. With the absorbed pump power of 11.7 W, the pulse width could be as low as 42 ns, with a corresponding average output power of 580 mW. At around 40 kHz repetition rate, the energy of a single Q-switched pulse was estimated to be about 14.5 μJ and the peak power was 346 W. The passive Q switching operation for the Co2+:LMA in different polarization states was also investigated. PACS 42.55.-f; 42.55.Xi; 42.60.Gd; 42.70.Mp  相似文献   

3.
An efficient diode-pumped passively Q-switched Nd:GdVO4/Cr4+:YAG laser was employed to generate a high-repetition-rate, high-peak-power eye-safe laser beam with an intracavity optical parametric oscillator (OPO) based on a KTP crystal. The conversion efficiency for the average power is 8.3% from pump diode input to OPO signal output and the slope efficiency is up to 10%. At an incident pump power of 14.5 W, the compact intracavity OPO cavity, operating at 46 kHz, produces average powers at 1571 nm up to 1.2 W with a pulse width as short as 700 ps. PACS 42.60.Gd; 42.65.Yj; 42.55.X  相似文献   

4.
Highly efficient continuous-wave and acousto-optically Q-switched laser emission in Nd:GdVO4 crystal, end-pumped at 879 nm into the laser emitting level, are reported. A maximum cw output power of 13.3 W is obtained, corresponding to the slope efficiency of 74.6% in absorbed power; an average output power of 12.1 W, a pulse width of 20.3 ns and a peak power of about 6 kW are reached at 100 kHz in A-O Q-switched operation. PACS  42.55.-f; 42.55.Xi; 42.60.Gd  相似文献   

5.
The power scaling capacity of a diode end-pumped Yb:KLu(WO4)2 laser, operating in the continuous-wave (cw) and passively Q-switched regimes, has been investigated. A cw output power of 11.5 W was achieved with an optical-to-optical efficiency of 41% with respect to the incident pump power, while the slope efficiency amounts to 60%. The passively Q-switchedoperation yielded an average output power of 4.3 W at the fundamental wavelength of 1031.7 nm, and 1.15 W of Raman radiation at 1139.3 nm. The total slope efficiency for Q-switched operation was 40%. The highest pulse energy, duration, and peak power were 170 μJ, 2.2 ns, and 77.3 kW for the fundamental radiation, and 51 μJ, 2.3 ns, and 22.2 kW for the Raman radiation. PACS 42.55.Rz; 42.55.Xi; 42.55.Ye  相似文献   

6.
Room-temperature cw and pulsed operation of a diode-end-pumped Tm:YAP laser   总被引:1,自引:0,他引:1  
We report the continuous-wave and acousto-optical Q-switched operation of a diode-end-pumped Tm:YAP laser. Continuous-wave output power of 3.5 W at 1.99 μm was obtained under the absorbed pump power of 14 W. Under Q-switched laser operation, the average output power increased from 1.57 W to 2.0 W, with an absorbed pump power of 12.6 W, as the repetition rate increased from 1 kHz to 10 kHz. The maximum Q-switched pulse energy was 1.57 mJ with a repetition rate of 1 kHz. The minimum pulse width was measured to be about 80 ns, corresponding to a peak power of 19.6 kW. PACS 42.55.Rz; 42.55.Xi; 42.60.Gd  相似文献   

7.
Continuous wave (CW) and Q-switched diode-pumped laser operation of Yb3+:NaLa(MoO4)2 single crystal was to our knowledge, demonstrated for the first time. A CW output power of 220 mW and slope efficiency of 46% were obtained. Q-switched laser operation was achieved with a pulse duration of 60 ns average output power of 70 mW and slope efficiency of 22%. PACS 42.55.Xi; 42.60.Pk; 42.60.Gd.  相似文献   

8.
By using a-cut Nd:Lu0.15Y0.85VO4 mixed crystal as laser gain medium, a diode-pumped passively Q-switched and mode-locked (QML) laser with a GaAs saturable absorber in a Z-type folded cavity is demonstrated for the first time. The Q-switched mode-locked laser pulses with about 90% modulation depth are obtained as long as the pump power reached the oscillation threshold. The repetition rate of the passively Q-switched pulse envelope ranges from 50 to 186 kHz as the pump power increases from 0.915 to 6.520 W. Under an incident pump power of 6.52 W, the QML pulses with the largest average output power of 694 mW, the shortest pulse width of 200 ns and the highest pulse energy of 3.73 μJ are obtained. The mode-locked pulse width inside the Q-switched envelope is estimated to be about 275 ps. The experimental results show that Nd:Lu0.15Y0.85VO4 is a promising mixed crystal for QML laser.  相似文献   

9.
An efficient, eye-safe, high-repetition-rate, intracavity optical parametric oscillator (IOPO) inside an acousto-optically Q-switched Nd:YVO4 laser end pumped by a 30-W fiber-coupled diode laser was demonstrated. The pumping, acousto-optically Q-switched Nd:YVO4 laser gives 3-W average output power at 1064-nm wavelength at 40-kHz repetition rate. An additional separating mirror, x-cut KTP crystal and output coupler highly reflective at 1064-nm and partially transparent at 1572-nm wavelengths form a flat–flat IOPO resonator of 35-mm length. We have achieved 3-ns-duration pulses for 20-mm-long KTP and 4-ns-duration pulses for 30-mm-long KTP, respectively. More than 8-kW-peak-power pulses with an average power of 1.5 W at the signal wavelength for 40-kHz repetition rate were demonstrated. Due to the intracavity spatial cleaning effect, a near diffraction limited signal beam was achieved despite a relatively worse beam quality of the pumping beam. Conversion efficiencies of 50% with respect to Q-switched output at 1064-nm wavelength and 11% with respect to diode pump power were achieved. PACS 42.55.Xi; 42.60.Gd; 42.65.Yj  相似文献   

10.
Efficient continuous-wave (cw), passively Q-switched, and actively Q-switched laser operations are demonstrated with a mixed vanadate crystal of Nd:Gd0.18Y0.82VO4 under diode pumping. In a cw operation, an output power of 8.25 W is obtained at a maximum available incident pump power (Pin) of 15 W, with a slope efficiency of 56%. Using a Cr4+:YAG crystal of initial transmission of 62% as the saturable absorber for Q-switching, an average output power of 3.05 W is generated at pulse repetition frequency (PRF) of 16.7 kHz when the laser is pumped with the same maximum Pin. The pulse energy, pulse duration, and peak power are 183.3 μJ, 6.0 ns, and 30.6 kW, respectively. When actively Q-switched by an acousto-optic modulator, the laser produces an average output power of 5.5 W at PRF of 30 kHz with 16.2 W of pump power incident upon the laser crystal. The pulse energy, duration, and peak power are measured to be 183 μJ, 10.5 ns, and 17.5 kW, respectively.  相似文献   

11.
We report a double z-type folded plane-plane symmetrical cavity diode side pumped solid state yellow-orange laser at 593 nm by using intracavity sum-frequency mixing. By carefully designing the cavity and employing several techniques to increase sum-frequency efficiency, a Q-switched yellow-orange laser source, with an average output power of 8 W, a beam quality factor M 2 = 4.86, and a repetition rate of 8 kHz is developed. In this paper, we first use 1338 and 1064 nm emissions of Nd:YAG crystal to generate 593 nm yellow-orange laser beam by intracavity sum-frequency mixing (SFM).  相似文献   

12.
A laser diode directly end-pumped, passively Q-switched Nd:YVO4/Cr:YAG laser is presented in this paper. With 600 mW incident pump laser, Q-switched 1064 nm laser with an average power of 138 mW, pulse width of 19.8 ns, repetition rate of 170.1 kHz and peak power of 40.96 W is obtained. When a KTP crystal was inserted into the cavity, Q-switched 532 nm laser with an average power of 56 mW, pulse width of 28.4 ns, repetition rate of 118.2 kHz and peak power of 16.7 W is obtained at last.  相似文献   

13.
We present a simple technique to improve the symmetry of pulse emitted by doubly passively Q-switched lasers. Using both Cr4+:YAG and GaAs saturable absorbers in the same cavity, a diode-pumped doubly passively Q-switched Nd:YVO4 laser is realized for the fist time. This laser can generate more symmetric pulse with shorter pulse width and higher peak power compared with the solely passively Q-switched laser with Cr4+:YAG saturable absorber or GaAs coupler. The pulse symmetry factor ε of such a doubly passively Q-switched laser is experimentally shown to reach 1.05. Simulations by a rate-equation model for doubly passively Q-switched laser are in close agreement with the experimental results.PACS 42.55.Xi; 42.55.Rz; 42.60.Gd  相似文献   

14.
We have demonstrated passively Q-switched mode-locking in a laser-diode-pumped Nd:GdVO4 laser with an intracavity Cr4+:YAG saturable absorber. At a pump power of 19.4 W, the Q-switched mode-locked laser produced an average output power of 3.22 W, and the repetition rates of the Q-switched envelope and the mode-locked laser pulse were 227 kHz and 144 MHz, respectively. The duration of the mode-locked pulse was within the sub-nanosecond range. PACS 42.55.Xi; 42.60.Fc; 42.60.Gd; 42.55.Rz  相似文献   

15.
A diode-pumped passively Q-switched Nd:Lu0.15Y0.85VO4 laser with a GaAs output coupler is demonstrated. By using a mixed crystal Nd:Lu0.15Y0.85VO4 as laser medium, the passively Q-switched laser can generate shorter pulse width with higher peak power in comparison with the passively Q-switched Nd:LuVO4 or Nd:YVO4 lasers under the same laser cavity. At the incident pump power 11.9 W, the minimum pulse width of 3.23 ns and the maximum peak power 1.67 kW can be obtained. The average output power and the pulse repetition rate of the laser are also measured. The experimental results show that the mixed crystal is a promising laser medium for shorter Q-switched pulse with higher peak power.  相似文献   

16.
Efficient and compact yellow green pulsed laser output at 543 nm is generated by frequency doubling of a passively Q-switched end diode-pumped Nd:YVO4 laser at 1086 nm under the condition of sup-pressing the higher gain transition near 1064 nm. With 15 W of diode pump power and the frequency doubling crystal LBO, as high as 1.58 W output power at 543 nm is achieved. The optical to optical conversion efficiency from the corresponding Q-switched fundamental output to the yellow green output is 49%. The peak power of the Q-switched yellow green pulse laser is up to 30 kW with 5 ns pulse duration. The output power stability over 8 hours is better than 2.56% at the maximum output power. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by frequency doubling of a passively Q-switched end diode pumped Nd:YVO4 laser at 1086 nm.  相似文献   

17.
We report power scaling of the Yb3+:LaSc3(BO3)4 (Yb:LSB) laser material in thin disk configuration. Employing a 300-μm thick Yb(25 at. %):LSB crystal, the continuous-wave output power around 1.0 μm wavelength reaches 40 W for 95 W of pump power at 974 nm; the overall optical-to-optical efficiency and the slope efficiency are 0.43 and 0.48, respectively. Preliminary experiments show continuous tuning of the laser output between 991 nm and 1085 nm. PACS 42.55.Xi; 42.60.Fc; 42.55.Rz  相似文献   

18.
A high-power high-repetition-rate acousto-optically Q-switched 1342 nm laser with double Nd:YVO4 crystals pumped by fiber-coupled laser diodes is presented. The highest output power of 13.7 W was achieved with a total of 42 W pumping power in cw operation, the slope efficiency was measured as 36%, and the optical efficiency was better than 32%. In Q-switchedoperation, the highest pulse repetition rate of 100 kHz was obtained. At 50 kHz repetition rate, the laser exported 11.2 W average output power, with 60 ns average pulse width, ∼5% width stability (RMS) and ∼8% peak-power stability (RMS). At 10 kHz repetition rate, the highest average output power was measured as 6.3 W, single pulse energy was calculated as 0.63 mJ, with pulse width of 19 ns and peak-power higher than 30 kW. Combining the experimental results, we analyze and discuss some problems concerning Nd:YVO4 crystal working at 1,342 nm wavelength. PACS 42.55.-f; 42.55.Xi; 42.60.Gd  相似文献   

19.
I report the first demonstration of the generation of efficient sub-nanosecond self-stimulated Raman pulses by a diode-pumped passively Q-switched Nd:GdVO4/Cr4+:YAG laser. The conversion efficiency for the average power is 7% from pump diode input to self-Raman output and the slope efficiency is up to 14%. At an incident pump power of 2.0 W, the pulse duration, pulse energy, and peak power for the Stokes wavelength of 1175.6 nm were found to be 750 ps, 6.3 J, and 8.4 kW, respectively, with a pulse-repetition rate of 22 kHz. PACS 42.55.Ye; 42.55.Xi; 42.60.Gd  相似文献   

20.
We report on the spectroscopy and, for the first time to our knowledge, continuous-wave and Q-switched diode-pumped laser operation of Er,Yb:YVO4 crystal. Absorption and emission spectra of the crystal were determined. Lifetimes of Er3+ 4 I 13/2 and 4 I 11/2 levels that define laser performance of the crystal were measured and parameters of energy transfer between Yb3+ and Er3+ ions were estimated. cw output power of 115 mW with slope efficiency of 5.4% was achieved at 1604 nm. In the Q-switched mode an average output power of 81 mW with slope efficiency of 3.5% and pulse duration of 150 ns was obtained. In quasi-cw regime maximal peak power of 610 mW with slope efficiency of 6.7% was demonstrated. PACS 42.55.Xi; 42.60.Gd; 42.70.Hj  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号