首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In our continued exploratory synthesis of compounds containing transition-metal oxide magnetic nanostructures, a new copper(II) phosphate phase, Cs2Cu3P4O14 (1), was isolated employing the mixed CsCl/2CsI molten flux. The X-ray single-crystal structural analysis shows that the Cs2Cu3P4O(14) phase crystallizes in a monoclinic space group with a = 7.920(2) A, b = 10.795(2) A, c = 7.796(2) A, beta = 103.90(3) degrees , and V = 646.9(2) A(3); P2(1)/c (No. 14); Z = 2. The structure has been refined by the full-matrix least-squares method to a final solution with R1 = 0.0248, wR2 = 0.0553, and GOF = 1.02. The three-dimensional Cu-O-P framework exhibits pseudo-one-dimensional channels where the Cs+ cations reside. The framework consists of trimeric CuO4 square-planar units stacked in a staggered configuration. These CuO4 trimers are interlinked by the P2O7 units via vertex-sharing O atoms. The stacked CuO4 units are slanted with respect to the Cu...Cu...Cu vector, resulting in additional Cu-O long bonds, 2.71(1) A, and a possibly shortened Cu...Cu distance, 3.38(3) A. 1 shows limited cation substitution with smaller alkali-metal cations; in fact, only a relatively small concentration of Cs+ can be substituted by Rb+ to form Cs(2-x)RbxCu3P4O14 (0.0 相似文献   

2.
Kwon YU  Lee KS  Kim YH 《Inorganic chemistry》1996,35(5):1161-1167
Hydrothermal reactions in the V(2)O(5)-SeO(2)-AOH systems (A = Na, K, Rb, Cs, NH(4)) were studied with various reagent mole ratios. Typical millimole ratios were V(2)O(5)/SeO(2)/AOH = 5 or 3/15/x in 10-mL aqueous solutions, where x was 5, 10, 15, and 20. The reactions with x = 5 for A = K, Rb, Cs, and NH(4) at 230 degrees C produced single-phase products of the general formula AV(3)Se(2)O(12) with the (NH(4))(VO)(3)(SeO(3))(2) structure type. The x = 15 reactions for A = Rb and Cs yielded AVSeO(5) phases with a new structure type. The crystal structure for CsVSeO(5) was determined with X-ray single-crystal diffraction techniques to be monoclinic (P2(1) (No. 4), a = 7.887(3) ?, b = 7.843(2) ?, c = 9.497(3) ?, beta = 92.13(3) degrees, Z = 4). The structure of this compound consists of interwoven helixes extended in all three directions. The spires are composed of alternating SeO(3) and VO(5) units sharing common-edge oxygens in all three directions. For A = K and NH(4), the reactions of this mole ratio did not produce any identifiable phases. Each of the compounds is characterized by powder X-ray diffraction, infrared spectroscopic, and thermogravimetric techniques. The dependency of the synthesis results on the reaction conditions is discussed and rationalized.  相似文献   

3.
A series of tetracyanoborate salts M[B(CN)4] with the singly charged cations of Li+, Na+, Rb+, Cs+, [NH4]+, Tl+, and Cu+ as well as the THF solvate tetracyanoborates Na[B(CN)4] x THF and [NH4][B(CN)4] x THF were synthesized and their X-ray structures, vibrational spectra, solubilities in water, and thermal stabilities determined and compared with already known M[B(CN)4] salts. Crystallographic data for these compounds are as follows: Na[B(CN)4], cubic, Fd3m, a = 11.680(1) A, Z= 8; Li[B(CN)4], cubic, P43m, a = 5.4815(1) A, Z= 1; Cu[B(CN)4], cubic, P43m, a = 5.4314(7) A, Z= 1; Rb[B(CN)4], tetragonal, /4(1)/a, a = 7.1354(2) A, c= 14.8197(6) A, Z= 4; Cs[B(CN)4], tetragonal, /4(1)/a, a = 7.300(2) A, c = 15.340(5) A, Z= 4; [NH4][B(CN)4], tetragonal, /4(1)/a, a = 7.132(1) A, c = 14.745(4) A, Z= 4; Tl[B(CN)4], tetragonal, /4(1)/a, a = 7.0655(2) A, c = 14.6791(4) A, Z= 4; Na[B(CN)4] x THF, orthorhombic, Pnma, a = 13.908(3) A, b = 9.288(1) A, c = 8.738(1) A, Z= 4; [NH4][B(CN)4] x THF, orthorhombic, Pnma, a = 8.831(1) A, b = 9.366(2) A, c = 15.061(3) A, Z= 4. The cubic Li+, Na+, and Cu+ salts crystallize in a structure consisting of two interpenetrating independent tetrahedral networks of M cations and [B(CN)4]- ions. The compounds with the larger countercations (Rb+, Cs+, Tl+, and [NH4]+) crystallize as tetragonal, also with a network arrangement. The sodium and ammonium salts with the cocrystallized THF molecules are both orthorhombic but are not isostructural. In the vibrational spectra the two CN stretching modes A1 and T2 coincide in general and the band positions are a measure for the strength of the interionic interaction. An interesting feature in the Raman spectrum of the copper salt is the first appearance of two CN stretching modes.  相似文献   

4.
A three-dimensional complex [Cu(3-ampy)(H2O)4](SO4)·(H2O) (3-ampy = 3-aminopyridine) has been synthesized. Crystallographic data: C5H16CuN2O9S, Mr = 343.80, triclinic, space group P, a = 7.675(2), b = 8.225(3), c = 10.845(3) (A), α= 86.996(4), β = 76.292(4),γ = 68.890(4)°, V = 620.0(3) (A)3, Z = 2, Dc = 1.841 g/cm3, F(000) = 354 and μ = 1.971 mm-1. The structure was refined to R = 0.0269 and wR = 0.0659 for 1838 observed reflections (I > 2σ(Ⅰ)). The structure consists of [Cu(3-ampy)(H2O)4]2 cations, SO42- anions and lattice water molecules. 3-Ampy acting as a bidentate bridging ligand generates a 1D covalent chain. A supramolecular 2D framework is formed through π-π stacking of pyridine rings. The lattice water molecules and SO42- anions are located between the adjacent 2D frameworks. The hydrogen bonding interactions from lattice water molecules and SO42- anions to coordinate water extend the 2D framework into a 3D network.  相似文献   

5.
Huang FQ  Ibers JA 《Inorganic chemistry》2001,40(10):2346-2351
The alkali metal/group 4 metal/polychalcogenides Cs(4)Ti(3)Se(13), Rb(4)Ti(3)S(14), Cs(4)Ti(3)S(14), Rb(4)Hf(3)S(14), Rb(4)Zr(3)Se(14), Cs(4)Zr(3)Se(14), and Cs(4)Hf(3)Se(14) have been synthesized by means of the reactive flux method at 823 or 873 K. Cs(4)Ti(3)Se(13) crystallizes in a new structure type in space group C(2)(2)-P2(1) with eight formula units in a monoclinic cell at T = 153 K of dimensions a = 10.2524(6) A, b = 32.468(2) A, c = 14.6747(8) A, beta = 100.008(1) degrees. Cs(4)Ti(3)Se(13) is composed of four independent one-dimensional [Ti(3)Se(13)(4-)] chains separated by Cs(+) cations. These chains adopt hexagonal closest packing along the [100] direction. The [Ti(3)Se(13)(4-)] chains are built from the face- and edge-sharing of pentagonal pyramids and pentagonal bipyramids. Formal oxidation states cannot be assigned in Cs(4)Ti(3)Se(13). The compounds Rb(4)Ti(3)S(14), Cs(4)Ti(3)S(14), Rb(4)Hf(3)S(14), Rb(4)Zr(3)Se(14), Cs(4)Zr(3)Se(14), and Cs(4)Hf(3)Se(14) crystallize in the K(4)Ti(3)S(14) structure type with four formula units in space group C(2)(h)()(6)-C2/c of the monoclinic system at T = 153 K in cells of dimensions a = 21.085(1) A, b = 8.1169(5) A, c = 13.1992(8) A, beta = 112.835(1) degrees for Rb(4)Ti(3)S(14);a = 21.329(3) A, b = 8.415(1) A, c = 13.678(2) A, beta = 113.801(2) degrees for Cs(4)Ti(3)S(14); a = 21.643(2) A, b = 8.1848(8) A, c = 13.331(1) A, beta = 111.762(2) degrees for Rb(4)Hf(3)S(14); a = 22.605(7) A, b = 8.552(3) A, c = 13.880(4) A, beta = 110.919(9) degrees for Rb(4)Zr(3)Se(14); a = 22.826(5) A, b = 8.841(2) A, c = 14.278(3) A, beta = 111.456(4) degrees for Cs(4)Zr(3)Se(14); and a = 22.758(5) A, b = 8.844(2) A, c = 14.276(3) A, beta = 111.88(3) degrees for Cs(4)Hf(3)Se(14). These A(4)M(3)Q(14) compounds (A = alkali metal; M = group 4 metal; Q = chalcogen) contain hexagonally closest-packed [M(3)Q(14)(4-)] chains that run in the [101] direction and are separated by A(+) cations. Each [M(3)Q(14)(4-)] chain is built from a [M(3)Q(14)] unit that consists of two MQ(7) pentagonal bipyramids or one distorted MQ(8) bicapped octahedron bonded together by edge- or face-sharing. Each [M(3)Q(14)] unit contains six Q(2)(2-) dimers, with Q-Q distances in the normal single-bond range 2.0616(9)-2.095(2) A for S-S and 2.367(1)-2.391(2) A for Se-Se. The A(4)M(3)Q(14) compounds can be formulated as (A(+))(4)(M(4+))(3)(Q(2)(2-))(6)(Q(2-))(2).  相似文献   

6.
A three-dimensional complex [Cu(3-ampy)(H2O)4](SO4)·(H2O) (3-ampy = 3-amino- pyridine) has been synthesized. Crystallographic data: C5H16CuN2O9S, Mr = 343.80, triclinic, space group P1, a = 7.675(2), b = 8.225(3), c = 10.845(3) A, α = 86.996(4), β = 76.292(4), γ = 68.890(4)°, V = 620.0(3) A3, Z = 2, Dc = 1.841 g/cm3, F(000) = 354 and μ = 1.971 mm-1. The structure was refined to R = 0.0269 and wR = 0.0659 for 1838 observed reflections (I > 2σ(I)). The structure consists of [Cu(3-ampy)(H2O)4]2+ cations, SO42- anions and lattice water molecules. 3-Ampy acting as a bidentate bridging ligand generates a 1D covalent chain. A supramolecular 2D framework is formed through π-π stacking of pyridine rings. The lattice water molecules and SO42- anions are located between the adjacent 2D frameworks. The hydrogen bonding interactions from lattice water molecules and SO42- anions to coordinate water extend the 2D framework into a 3D network.  相似文献   

7.
The polyborates Cs(2)M(2)B(10)O(17) (M = Na, K) have been prepared and their structures determined by single-crystal X-ray diffraction methods. They crystallize in the monoclinic space group C2/c (Z = 8) with unit-cell parameters a = 21.643(3) ?, b = 6.558(2) ?, c = 11.072(2) ?, beta = 105.43(1) degrees, V = 1514.8(6) ?(3) for the Na compound and a = 22.547(9) ?, b = 6.614(2) ?, c = 11.288(4) ?, beta = 103.25 degrees, V = 1638.3(8) ?(3) for the K analogue. The new structural type contains a 2-dimensional borate matrix that is built from a complete condensation of the ring system B(5)O(11). The Cs atoms reside within the borate matrix, and the Na (K) atoms are placed between the thick Cs borate sheets.  相似文献   

8.
The reactions of a Cu(II) salt, MoO(3), and the appropriate bipyridine ligand yield a series of bimetallic oxides, [Cu(3,4'-bpy)MoO(4)] (1), [Cu(3,3'-bpy)(0.5)MoO(4)] (2), and [Cu(4,4'-bpy)(0.5)MoO(4)].1.5H(2)O (3.1.5H(2)O). The structures of 1-3 exhibit three-dimensional covalent frameworks, constructed from bimetallic oxide layers tethered by the dipodal organoimine ligands. However, the [CuMoO(4)] networks are quite distinct. For structure 1, the layer consists of corner-sharing [MoO(4)] tetrehedra and [CuN(2)O(3)] square pyramids, while the layer of 2 is constructed from [MoO(4)] tetrehedra and binuclear [Cu(2)O(6)N(2)] units of edge-sharing copper square pyramids. The oxide substructure of 3 consists of [MoO(4)] tetrahedra corner-sharing with tetranuclear clusters of edge-sharing [CuO(5)N] octahedra. Crystal data: C(10)H(8)N(2)O(4)CuMo (1), orthorhombic Pbca, a = 12.4823(6) A, b = 9.1699(4) A, c = 19.5647(9) A, V = 2239.4(1) A(3), Z = 8; C(5)H(4)NO(4)CuMo (2), triclinic P, a = 5.439(1) A, b = 6.814(1) A, c = 10.727(2) A, alpha = 73.909(4)(o), beta = 78.839(4)(o); gamma = 70.389(4)(o); V = 357.6(1) A(3), Z = 2; C(10)H(8)N(2)O(8)Cu(2)Mo(2).3H(2)O 3.1.5H(2)O, triclinic P, a = 7.4273(7) A, b = 9.2314(8) A, c = 13.880(1) A, alpha = 71.411(2)(o), beta = 88.528(2)(o), gamma = 73.650(2)(o), V = 863.4(1) A(3), Z = 2. The magnetic properties of 1-3 arise solely from the presence of the Cu(II) sites, but reflect the structural differences within the bimetallic oxide layers. Compound 1 exhibits magnetic behavior consistent with ferromagnetic chains which couple antiferromagnetically at low temperature. Compound 2 exhibits strong antiferromagnetic dimeric interactions, with the magnetic susceptibility data consistent with the Bleaney-Bowers equation. Similarly, the magnetic susceptibility of 3 is dominated by antiferromagnetic interactions, which may be modeled as a linear S = 1/2 Heisenberg tetramer.  相似文献   

9.
通过Cu(ClO4)2和丙二酸在水溶液中的自组装合成了一个新的3D配位聚合物:Na[Cu2(malonate)2]·(ClO4)·(H2O)2。X-射线结构分析表明该化合物晶体属于正交晶系Pnma空间群(a=1.256 5(3),b=1.0594 3(2),c=1.0755 6(14) nm,V=1.431 7(4) nm3Z=4)。该聚合物的空间堆积在沿b轴和c轴方向分别形成大小为0.98 nm × 0.83 nm和0.40 nm × 0.40 nm的方形孔洞,在沿a轴方向形成大小为0.85 nm × 0.40 nm的砖墙形孔洞。磁性测试结果表明该化合物显示出铁磁性。导电性能测试实验表明它是一个半导体,经拟合得到其活化能为0.80 eV。  相似文献   

10.
Mo X  Ferguson E  Hwu SJ 《Inorganic chemistry》2005,44(9):3121-3126
A new family of salt-containing, mixed-metal silicates (CU-14), Ba6Mn4Si12O34Cl3 (1) and Ba6Fe5Si11O34Cl3 (2), was synthesized via the BaCl2 salt-inclusion reaction. These compounds crystallize in the noncentrosymmetric (NCS) space group Pmc2(1) (No. 26), adopting 1 of the 10 NCS polar, nonchiral crystal classes, mm2 (C2v). The cell dimensions are a = 6.821(1) A, b = 9.620(2) A, c = 13.172(3) A, and V = 864.4(3) A3 for 1 and a = 6.878(1) A, b = 9.664(2) A, c = 13.098(3) A, and V = 870.6(3) A3 for 2. The structures form a composite framework made of the (M(4+x)Si(12-x)O34)9- (M = Mn, x = 0; M = Fe, x = 1) covalent oxide and (Ba6Cl3)9+ ionic chloride sublattices. The covalent framework exhibits a pseudo-one-dimensional channel where the extended barium chloride lattice (Ba3Cl1.5)(infinity) resides, and it consists of fused eight-membered meta-silicate rings propagating along [100] via sharing two opposite [Si2O7]6- units to form an acentric lattice. Single-crystal structure studies also reveal the ClBa4 unit adopting an interesting seesaw configuration, in which the lone pair electrons of chlorine preferentially face the oxide anions of the transition metal silicate channel, thus forming the observed polar frameworks. Similar to the synthesis of organic-inorganic hybrid materials, the salt-inclusion method facilitates a promising approach for the directed synthesis of special framework solids, including NCS compounds, via composite lattices.  相似文献   

11.
以哌嗪为模板剂,在水-乙醇混合溶剂体系中溶剂热合成了两个具有三维开放骨架结构的稀土硫酸盐[Ln4(H2O)4(SO4)10](C4N2H12)4(H2O)4(Ln = Gd,化合物1和Eu,化合物2),并对其进行了结构表征、热重以及荧光光谱分析. 单晶结构解析表明,化合物1和2属于同构异质,均结晶于单斜晶系,P21/c空间群,化合物1,a = 19.691(3) ?,b = 19.249(3) ?,c = 13.186(2) ?,β = 92.33(0)o,V = 4993.5(1) ?3, Z =4. 化合物2,a = 19.7233(8) ?,b = 19.2791(8) ?,c = 13.2095(5) ?,β = 92.329(1)o,V = 5018.7(3) ?3, Z =4. 两个化合物在ab平面上由SO4,GdO8和GdO9多面体共边或共角交错连接形成含有八元环和十六元环的二维层状结构,该二维层沿c方向平行排列,相邻层通过SO4四面体相连形成具有孔道的三维开放骨架结构,其孔道之中包含平衡骨架负电荷的质子化哌嗪分子. 化合物2的固体荧光光谱分析显示其在397nm激发波长下,表现出典型的Eu3+发光性质.    相似文献   

12.
Four compounds containing tri- and diperoxodioxouranium(VI) complexes have been synthesized under ambient conditions and structurally characterized. The crystal structures of Na4(UO2)(O2)3(H2O)12 (monoclinic, P21/c, a=6.7883(6) A, b=16.001(2) A, c=16.562(2) A, beta=91.917(2) degrees, V=1797.9(3) A3, Z=4) and Ca2(UO2)(O2)3(H2O)9 (orthorhombic, Pbcn, a=9.576(3) A, b=12.172(3) A, c=12.314(2) A, V=1435.4(6) A3, Z=4) contain clusters of triperoxodioxouranium(VI). These clusters are bonded through a network of H bonding to H2O groups and in the Ca compound by bonds to Ca2+ cations. In the crystal structure of Na2Rb4(UO2)2(O2)5(H2O)14 (orthorhombic, Pbcm, a=6.808(2) A, b=16.888(6) A, c=23.286(8) A, V=2677.5(16) A3, Z=4), triperoxodioxouranium(VI) polyhedra share a peroxide edge, forming dimers of polyhedra of composition (UO2)2(O2)5(6-). Adjacent dimers are linked through bonding to Rb+ cations and by H bonds to H2O groups. The crystal structure of K6[(UO2)(O2)2(OH)]2(H2O)7 (orthorhombic, Pcca, a=15.078(8) A, b=6.669(4) A, c=23.526(13) A, V=2366(2) A3, Z=4) contains diperoxodioxouranium(VI) polyhedra that include two OH groups. These polyhedra share an OH-OH edge, forming dimers of composition (UO2)2(O2)4(OH)2(6-). The dimers are linked by bonds to K+ cations and by H bonding to H2O groups.  相似文献   

13.
Wu Y  Bensch W 《Inorganic chemistry》2007,46(15):6170-6177
The reactions of Ti with in situ formed polythiophosphate fluxes of A(2)S(3) (A = Rb, Cs), P(2)S(5), and S at 500 degrees C result in the formation of two new quaternary titanium thiophosphates with compositions Rb(3)Ti(3)(P(4)S(13))(PS(4))(3) (1) and Cs(2)Ti(2)(P(2)S(8))(PS(4))(2) (2). Rb(3)Ti(3)(P(4)S(13))(PS(4))(3) (1) crystallizes in the chiral hexagonal space group P6(3) (No. 173) with lattice parameters a = 18.2475(9) Angstrom, c = 6.8687(3) Angstrom, V = 1980.7(2) Angstrom(3), Z = 2. Cs(2)Ti(2)(P(2)S(8))(PS(4))(2) (2) crystallizes in the noncentrosymmetric monoclinic space group Cc (No. 9) with a = 21.9709(14) Angstrom, b = 6.9093(3) Angstrom, c = 17.1489(10) Angstrom, beta = 98.79(1) degrees, V = 2572.7(2) Angstrom(3), Z = 4. In the structure of 1 TiS(6) octahedra, three [PS(4)] tetrahedra, and the hitherto unknown [P(4)S(13)](6-) anion are joined to form two different types of helical chains. These chains are connected yielding two different helical tunnels being directed along [001]. The tunnels are occupied by the Rb+ ions. The [P(4)S(13)](6-) anion is generated by three [PS(4)] tetrahedra sharing corners with one [PS(4)] group in the center of the starlike anion. The P atoms of the three [PS(4)] tetrahedra attached to the central [PS(4)] group define an equilateral triangle. The [P(4)S(13)](6-) anion may be regarded as a new member of the [P(n)S(3n+1)]((n+2)-) series. The structure of Cs(2)Ti(2)(P(2)S(8))(PS(4))(2) (2) consists of the one-dimensional polar tunnels containing the Cs(+) cations. The rare [P(2)S(8)](4-) anion which is composed of two [PS(4)] tetrahedra joined by a S(2)(2-) anion is a fundamental building unit in the structure of 2. One-dimensional undulated chains being directed along [100] are joined by [PS(4)] tetrahedra to form the three-dimensional network with polar tunnels running along [010]. The compounds are characterized with IR, Raman spectroscopy, and UV/vis diffuse reflectance spectroscopy.  相似文献   

14.
Six new actinide metal thiophosphates have been synthesized by the reactive flux method and characterized by single-crystal X-ray diffraction: Cs(8)U(5)(P(3)S(10))(2)(PS(4))(6) (I), K(10)Th(3)(P(2)S(7))(4)(PS(4))(2) (II), K(5)U(PS(4))(3) (III), K(5)Th(PS(4))(3) (IV), Rb(5)Th(PS(4))(3) (V), and Cs(5)Th(PS(4))(3) (VI). Compound I crystallizes in the monoclinic space group P2(1)/c with a = 33.2897(1) A, b = 14.9295(1) A, c = 17.3528(2) A, beta = 115.478(1) degrees, Z = 8. Compound II crystallizes in the monoclinic space group C2/c with a = 32.8085(6) A, b = 9.0482(2) A, c = 27.2972(3) A, beta = 125.720(1) degrees, Z = 8. Compound III crystallizes in the monoclinic space group P2(1)/c with a = 14.6132(1) A, b = 17.0884(2) A, c = 9.7082(2) A, beta = 108.63(1) degrees, Z = 4. Compound IV crystallizes in the monoclinic space group P2(1)/n with a = 9.7436(1) A, b = 11.3894(2) A, c = 20.0163(3) A, beta = 90.041(1) degrees, Z = 4, as a pseudo-merohedrally twinned cell. Compound V crystallizes in the monoclinic space group P2(1)/c with a = 13.197(4) A, b = 9.997(4) A, c = 18.189(7) A, beta = 100.77(1) degrees, Z = 4. Compound VI crystallizes in the monoclinic space group P2(1)/c with a = 13.5624(1) A, b = 10.3007(1) A, c = 18.6738(1) A, beta = 100.670(1) degrees, Z = 4. Optical band-gap measurements by diffuse reflectance show that compounds I and III contain tetravalent uranium as part of an extended electronic system. Thorium-containing compounds are large-gap materials. Raman spectroscopy on single crystals displays the vibrational characteristics expected for [PS(4)](3)(-), [P(2)S(7)](4-), and the new [P(3)S(10)](5)(-) building blocks. This new thiophosphate building block has not been observed except in the structure of the uranium-containing compound Cs(8)U(5)(P(3)S(10))(2)(PS(4))(6).  相似文献   

15.
Two new mixed-valent tellurium oxides with vanadium(V), A(4)V(6)[Te(2)(4+)Te(6+)]O(24) (A = K and Rb), have been synthesized by hydrothermal and conventional solid state techniques. Their structures were determined by single-crystal X-ray diffraction analysis. These two iso-structural compounds exhibit layered structural topologies consisting of [V(6)Te(3)O(24)](4-) anionic units. In these anionic structural units, a Te(6+)O(6) octahedron is connected to six VO(4) tetrahedra by corner-sharing to generate a [V(6)TeO(24)] unit, and each of these [V(6)TeO(24)] units are interconnected by sharing two Te(4+)O(3) polyhedra to complete the infinite [V(6)Te(3)O(24)](4-) sheets. Infrared spectroscopy, UV-Visible diffuse reflectance spectroscopy, and thermogravimetric analysis were also performed on these two compounds. Crystal data: K(4)V(6)Te(3)O(24), trigonal, space group R ?3c (No. 167) with a = b = 9.7075(6) ?, c = 42.701(3) ?, V = 3484.9(4) ?(3), and Z = 6; Rb(4)V(6)Te(3)O(24), trigonal, space group R ?3c (No. 167) with a = b = 9.8399(9) ?, c = 43.012(4) ?, V = 3606.6(6) ?(3), and Z = 6.  相似文献   

16.
Huang FQ  Ibers JA 《Inorganic chemistry》2001,40(11):2602-2607
The new compounds K(2)TiCu(2)S(4), Rb(2)TiCu(2)S(4), Rb(2)TiAg(2)S(4), Cs(2)TiAg(2)S(4), and Cs(2)TiCu(2)Se(4) have been synthesized by the reactions of A(2)Q(3) (A = K, Rb, Cs; Q = S, Se) with Ti, M (M = Cu or Ag), and Q at 823 K. The compounds Rb(2)TiCu(2)S(4), Cs(2)TiAg(2)S(4), and Cs(2)TiCu(2)Se(4) are isostructural. They crystallize with two formula units in space group P4(2)/mcm of the tetragonal system in cells of dimensions a = 5.6046(4) A, c = 13.154(1) A for Rb(2)TiCu(2)S(4), a =6.024(1) A, c = 13.566(4) A for Cs(2)TiAg(2)S(4), and a =5.852(2) A, c =14.234(5) A for Cs(2)TiCu(2)Se(4) at 153 K. Their structure is closely related to that of Cs(2)ZrAg(2)Te(4) and comprises [TiM(2)Q(4)(2)(-)] layers, which are separated by alkali metal atoms. The [TiM(2)Q(4)(2)(-)] layer is anti-fluorite-like with both Ti and M atoms tetrahedrally coordinated to Q atoms. Tetrahedral coordination of Ti(4+) is rare in the solid state. On the basis of unit cell and space group determinations, the compounds K(2)TiCu(2)S(4) and Rb(2)TiAg(2)S(4) are isostructural with the above compounds. The band gaps of K(2)TiCu(2)S(4), Rb(2)TiCu(2)S(4), Rb(2)TiAg(2)S(4), and Cs(2)TiAg(2)S(4) are 2.04, 2.19, 2.33, and 2.44 eV, respectively, as derived from optical measurements. From band-structure calculations, the optical absorption for an A(2)TiM(2)Q(4) compound is assigned to a transition from an M d and Q p valence band (HOMO) to a Ti 3d conduction band.  相似文献   

17.
Single crystals of three new layered uranium phosphate fluorides, A(UO2)F(HPO4).xH2O (A = Cs+, Rb+, and K+; x = 0-1) have been synthesized by hydrothermal reactions using UO3, H3PO4, HF, and corresponding alkali metal halides as reagents. Although all three new materials have layered structures, each of them contains different structural motifs within the layer. While Cs(UO2)F(HPO4).0.5H2O and Rb(UO2)F(HPO4) reveal noncentrosymmetric crystal structures, K(UO2)F(HPO4).H2O crystallizes in a centrosymmetric space group. In addition, the ion-exchanged phases for all three materials are highly crystalline. Crystal data: Cs(UO2)F(HPO4).0.5H2O, orthorhombic, space group Pca21 (No. 29), with a = 25.656(5) A, b = 6.0394(12) A, c = 9.2072(18) A, and Z = 4; Rb(UO2)F(HPO4), orthorhombic, space group Cmc21 (No. 36), with a = 17.719(4) A, b = 6.8771(14) A, c = 12.139(2) A, and Z = 8; K(UO2)F(HPO4).H2O, monoclinic, P21/n (No. 14), with a = 6.7885(14) A, b = 8.7024(17) A, c = 12.020(2) A, beta = 94.09(3), and Z = 4.  相似文献   

18.
Two new copper 2-pyrazinecarboxylate (2-pzc) coordination polymers incorporating [Mo(8)O(26)](4-) and [V(10)O(28)H(4)](2-) anions were synthesized and structurally characterized: Cu(4)(2-pzc)(4))(H(2)O)(8)(Mo(8)O(26)).2H(2)O (1) and Cu(3)(2-pzc)(4)(H(2)O)(2)(V(10)O(28)H(4)).6.5H(2)O (2). Crystal data: 1, monoclinic, space group P2(1)/n, a = 11.1547(5) A, b = 13.4149(6) A, c = 15.9633(7) A, beta = 90.816(1) degrees; 2, triclinic, space group P1, a = 10.5896(10) A, b = 10.7921(10) A, c = 13.5168(13) A, alpha = 104.689(2) degrees, beta = 99.103(2) degrees, gamma = 113.419(2) degrees. Compound 1 contains [Cu(2-pzc)(H(2)O)(2)] chains charge-balanced by [Mo(8)O(26)](4-) anions. In compound 2, layers of [Cu(3)(2-pzc)(4)(H(2)O)(2)] form cavities that are filled with [V(10)O(28)H(4)](2-) anions. The magnetic properties of both compounds are described.  相似文献   

19.
Huang Q  Wu X  Wang Q  Sheng T  Lu J 《Inorganic chemistry》1996,35(4):893-897
Synthetic methods for [Et(4)N](4)[W(4)Cu(4)S(12)O(4)] (1), [Et(4)N](4)[Mo(4)Cu(4)S(12)O(4)] (2), [W(4)Cu(4)S(12)O(4)(CuTMEN)(4)] (3), and [Mo(4)Cu(4)S(12)O(4)(CuTMEN)(4)] (4) are described. [Et(4)N](2)[MS(4)], [Et(4)N](2)[MS(2)O(2)], Cu(NO(3))(2).3H(2)O, and KBH(4) (or Et(4)NBH(4)) were used as starting materials for the synthesis of 1 and 2. Compounds 3 and 4 were produced by reaction of [Et(4)N](2)[WOS(3)], Cu(NO(3))(2).3H(2)O, and TMEN and by reaction of [Me(4)N](2)[MO(2)O(2)S(8)], Cu(NO(3))(2).3H(2)O, and TMEN, respectively. Crystal structures of compounds 1-4 were determined. Compounds 1 and 2 crystallized in the monoclinic space group C2/c with a = 14.264(5) ?, b = 32.833(8) ?, c = 14.480(3) ?, beta = 118.66(2) degrees, V = 5950.8(5) ?(3), and Z = 4 for 1 and a = 14.288(5) ?, b = 32.937(10) ?, c = 14.490(3) ?, beta = 118.75(2) degrees, V = 5978.4(7) ?(3), and Z = 4 for 2. Compounds 3 and 4 crystallized in the trigonal space group P3(2)21 with a = 13.836(6) ?, c = 29.81(1) ?, V = 4942(4) ?(3), and Z = 3 for 3 and a = 13.756(9) ?, c = 29.80(2) ?, V = 4885(6) ?(3), and Z = 3 for 4. The cluster cores have approximate C(2v) symmetry. The anions of 1 and 2 may be viewed as consisting of two butterfly-type [CuMOS(3)Cu] fragments bridged by two [MOS(3)](2-) groups. Eight metal atoms in the anions are arranged in an approximate square configuration, with a Cu(4)M(4)S(12) ring structure. Compounds 3 and 4 can be considered to consist of one [M(4)Cu(4)S(12)O(4)](4-) (the anions of 1 and 2) unit capped by Cu(TMEN)(+) groups on each M atom; the Cu(TMEN)(+) groups extend alternately up and down around the Cu(4)M(4) square. The electronic spectra of the compounds are dominated by the internal transitions of the [MOS(3)](2-) moiety. (95)Mo NMR spectral data are investigated and compared with those of other compounds.  相似文献   

20.
The reaction of Mn and Cd in alkali metal polythioarsenate fluxes afforded four new compounds featuring molecular anions. K(8)[Mn(2)(AsS(4))(4)] (I) crystallizes in the monoclinic space group P2/n with a = 9.1818(8) A, b = 8.5867(8) A, c = 20.3802(19) A, and beta = 95.095(2) degrees. Rb(8)[Mn(2)(AsS(4))(4)] (II) and Cs(8)[Mn(2)(AsS(4))(4)] (III) both crystallize in the triclinic space group P1 with a = 9.079(3) A, b = 9.197(3) A, c = 11.219(4) A, alpha = 105.958(7) degrees, beta = 103.950(5) degrees, and gamma = 92.612(6) degrees for II and a = 9.420(5) A, b = 9.559(5) A, c = 11.496(7) A, alpha = 105.606(14) degrees, beta = 102.999(12) degrees, and gamma = 92.423(14) degrees for III. The discrete dimeric [Mn(2)(AsS(4))(4)](8-) clusters in these compounds are composed of two octahedral Mn(2+) ions bridged by two [AsS(4)](3-) units and chelated each by a [AsS(4)](3-) unit. Rb(8)[Cd(2)(AsS(4))(2)(AsS(5))(2)] (IV) crystallizes in P1 with a = 9.122(2) A, b = 9.285(2) A, c = 12.400(3) A, alpha = 111.700(6) degrees, beta = 108.744 degrees, and gamma = 90.163(5) degrees. Owing to the greater size of Cd compared to Mn, the Cd centers in this compound are bridged by [AsS(5)](3-) units. The [Cd(2)(AsS(4))(4)](8-) cluster is a minor component cocrystallized in the lattice. These compounds are yellow in color and soluble in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号