首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Titanium(IV) citrate complexes with different anions Na3[Ti(H2cit)2(Hcit)] · 9H2O (1), K4[Ti(H2cit)(Hcit)2] · 4H2O (2), K5[Ti(Hcit)3] · 4H2O (3) and Na7[TiH(cit)3] · 18H2O (4) (H4cit = citric acid) were isolated in pure forms from the solutions of titanate and citrate at various pH values. X-ray structural analyses revealed the presence of a monomeric tricitrato titanium unit in the four complexes. Each Ti(IV) ion is coordinated octahedrally by the three citrate ligands in different protonated forms. The citrate ligand chelates bidentately to the titanium ion through its negatively charged α-alkoxy and α-carboxy groups. This is consistent with the large downfield 13C NMR shifts for the carbon atoms bearing the α-alkoxy and α-carboxy groups. The very strong hydrogen-bonds existing in the protonated and deprotonated β-carboxy groups may be the key factor for the stabilization of the titanium citrate complexes. When the pH value is lower than 7.0, 13C NMR spectra of 1:3 Ti:citrate solutions are similar to those of the titanium citrate complexes isolated at the corresponding pH values. The dissociation of free citrate increases with the rise of pH value. However, 13C NMR spectra of 1:3 Ti:citrate solutions indicate that there may exist different citrate titanium species when the pH value is higher than 7.0.  相似文献   

2.
Electrochemical formation of zinc selenide from acidic aqueous solutions   总被引:1,自引:0,他引:1  
An investigation on electrochemical ZnSe thin film growth from acidic aqueous baths of Se(IV) and Zn(II) species is described. The range of co-deposition potentials is predicted on a thermodynamic basis according to a known electrochemical model. A study on the voltammetric behavior of Ti and Ni electrode substrates in the working solutions at various temperatures provides the main features of the applied electrochemical process. Cathodic electrodeposition at high temperatures (>65 °C) results in the formation of polycrystalline cubic, randomly oriented, ZnSe crystallites suffering, in general, from the presence of a crystalline Se phase in excess. Annealing of as-grown films adjusts the stoichiometry and leads to the production of semiconductive ZnSe with a band gap width of 2.7 eV. Electronic Publication  相似文献   

3.
A variety of oxide layers, from passive amorphous TiOx of few nanometer thicknesses to micrometer-thick porous with different anatase to rutile ratios, were prepared by potentiostatic or galvanostatic anodization of Ti metal in H2SO4 and HF/H3PO4 solutions and used as substrates for electrodeposition of cadmium selenide from acidic selenite baths. The substrate and CdSe microstructures were investigated by X-ray diffraction and electron microscopy techniques. Barrier TiOx and heterogeneously structured oxide substrates induced growth of zinc blend/wurtzite CdSe, whereas highly ordered porous titanium dioxide (TiO2) accommodated growth of (10.0) oriented hexagonal CdSe thin layers. Pulsed potential plating was employed to control pore-filling during electrodeposition of CdSe. Photoelectrochemical evaluation of the produced electrodes in polysulfide cell under green light illumination implied a TiO2 sensitization effect in the case of CdSe/(porous TiO2)/Ti system, as evidenced by a negative shift in flat band potential and an increase in open circuit potential. The sensitization effect was observed even with CdSe deposited by a single potential pulse signifying the importance of contacting the TiO2 surface to the electrolytic solution via a very thin layer of CdSe.  相似文献   

4.
The electronic features and photochemistry of TpTiCl3 (1) (Tp = hydrotris(pyrazol-1-yl)borate) and Tp*TiCl3 (2) (Tp* = hydrotris(3,5-dimethylpyrazol-1-yl)borate) were studied in THF. Reactive decay of the excited states produced either (or ) and metal center Ti(III) radicals via homolytic cleavage of the Tp → Ti (Tp* → Ti) bond. Cleavage of the Tp → Ti and the Tp* → Ti bond as a primary photoprocess is shown to be consistent with LMCT Tp → Ti and Tp* → Ti excitation. TpTiCl2(THF) (3) and Tp*TiCl2(THF) (4) were also prepared by stoichiometric reduction of 1 and 2 with Li3N. The THF ligand in 3 and 4 was replaced by the stable nitroxyl radical TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) to provide the new complexes TpTiCl2(TEMPO) (5) and Tp*TiCl2(TEMPO) (6) in which the TEMPO ligand is η1 coordinated to Ti(IV). Photolysis of 5 and 6 generate Ti(III) and the TEMPO radical in the primary photochemical step.  相似文献   

5.
6.
The title compound, trimercury(II) bis­[selenite(IV)] selen­ate(VI), contains three crystallographically inequivalent HgII cations with coordination numbers of eight (denoted Hg1 and Hg2) and five (denoted Hg3). The corresponding coordination polyhedra around the metal atoms might be described as intermediates between a square antiprism and a triangulated dodecahedron for both Hg1 and Hg2, and a strongly distorted truncated octahedron for Hg3. [HgO8/2] layers of edge‐sharing [HgO8] polyhedra propagate parallel to the bc plane, and are connected via SeVIO4 tetrahedra and [Hg3O5] polyhedra along the a axis, forming an arrangement with channels propagating parallel to the b axis. The two independent SeIVO3 pyramids bridge the Hg atoms, and the non‐bonding orbitals of the SeIV ions protrude into the channels from opposite sides.  相似文献   

7.
The Rh target preparation for production of 103Pd was investigated by using a thick electrodeposition of rhodium metal on a copper backing. The electrodeposition experiments were performed in acidic sulfate media using RhCl3·3H2O, Rh2(SO4)3 (recovered from hydrochloric acid solution) and also in the commercially available Rhodex plating baths. For high current beam irradiation of a Rh target, the qualities of the deposit of the three baths were compared in terms of thermal shock, crack-free and morphology criteria. The quality of the plating obtained from a sulfate bath [Rh2(SO4)3] was comparable with the one obtained from commercially available Rhodex bath. The optimum conditions of the electrodepositions were as follows: 4.8 g rhodium [as Rh2(SO4)3], pH 2, DC current density of ca 8.5 mA·cm–2, 1% sulfamic acid (w/v) and temperature 40–60 °C.The authors would like to thank their colleagues at the VUB-Cyclotron department for help and assistance in preparation of the electrodeposition equipment and taking the SEM photomicrographs and also K. Aardaneh (NRCAM) for his assistance.  相似文献   

8.
The Rh target preparation for production of 103Pd was investigated by using a thick electrodeposition of rhodium metal on a copper backing. The electrodeposition experiments were performed in acidic sulfate media using RhCl3·3H2O, Rh2(SO4)3 (recovered from hydrochloric acid solution) and also in the commercially available Rhodex plating baths. For high current beam irradiation of a Rh target, the qualities of the deposit of the three baths were compared in terms of thermal shock, crack-free and morphology criteria. The quality of the plating obtained from a sulfate bath [Rh2(SO4)3] was comparable with the one obtained from commercially available Rhodex bath. The optimum conditions of the electrodepositions were as follows: 4.8 g rhodium [as Rh2(SO4)3], pH 2, DC current density of ca 8.5 mA·cm–2, 1% sulfamic acid (w/v) and temperature 40–60 °C.The authors would like to thank their colleagues at the VUB-Cyclotron department for help and assistance in preparation of the electrodeposition equipment and taking the SEM photomicrographs and also K. Aardaneh (NRCAM) for his assistance.  相似文献   

9.
The thermolysis of [(C5H4)SiMe2(N-t-Bu)]TiPh2 in the presence of diphenylacetylene proceeds at 80 °C in cyclohexane solution with the sole formation of the titanacyclic complex [(C5H4)SiMe2(N-t-Bu)]Ti[(o-C6H4)C(Ph)C(Ph)], which has been characterized by solution NMR measurements and X-ray crystallographic analysis. This reaction is accompanied by the elimination of benzene and presumably occurs via coupling of a titanium benzyne intermediate with diphenylacetylene. The two chemically inequivalent Ti-C bonds of 2.081(7) and 2.103(6) Å in [(C5H4)SiMe2(N-t-Bu)]Ti[(o-C6H4)C(Ph)C(Ph)] reflect the increased electrophilicity of the d0 Ti(IV) center arising from the presence of the bifunctional ansa-cyclopentadienyldimethylsilylamido ligand.  相似文献   

10.
The formation of coordination polymers (CuCl)P4Se3 (1), (CuBr)3(P4Se3)2 (2), (CuI)3(P4Se3)2 (3) and (CuI)P4Se3 (4), from solutions of copper(I) halides and P4Se3 by diffusion methods has been studied. The new compounds were characterized by X-ray crystallography, solid-state 31P MAS NMR and Raman spectroscopy. Theoretical studies on the DFT level in the crystalline phase allowed the unequivocal assignment of the recorded Raman shifts between 200 and 480 cm−1. The structure of 1 consists of a 2D network of castellated [CuCl]n chains and bidentate P4Se3 molecules. The 3D network of 2 comprises [CuBr]n chains, which are linked by tridentate P4Se3 molecules. Compound 3 is a three-dimensional polymer composed of four-membered (CuI)2 rings and castellated [CuI]n chains, which are linked by tridentate P4Se3 molecules involving two basal and the apical P atoms. Thermal conversion of 1 at 230 °C gives (CuCl)3(P4Se3)2 (5), which is isostructural with 2. The thermal conversion of (CuI)3P4S3, which was studied for comparison gave at 371 °C (CuI)3P4S4, Cu3PS4 and small amounts of Cu6PS5I.  相似文献   

11.
Summary The azido complexes [Ti( 5-C5H5Cl2(N3)], [Ti( 5-C5H5)2Cl(N3)], [TiCl(N3)(S2CNEt2)2] and [Ti(N3)(S2CNEt2)3] have been prepared from appropriate metal halides by reaction with trimethylsilylazide. The [Ti( 5-C5H5)Cl2(N3)] complex reacts with HC1 and MeCOCl to give HN3 and MeNCO respectively and [Ti( 5-C5H5)Cl3], whereas [Ti( 5-C5H5)Cl2(NPPh3)] is formed on reaction with PPh3. The phosphiniminato complexes [TiCl(NPPh3)(S2CNEt2)2], [TiCl2(NPPh3)2], [VOCl2(NPPh3)], [VOCl(NPPh3)2] and [VCl3(NPPh3)2] have been prepared from the appropriate halido-complexes and Me3SiN=PPh3.  相似文献   

12.
The potentiometric method is used to measure the equilibrium potential in the Ti(IV)/Ti(III) system and determine that monophosphate Ti(IV) complexes and Ti3+hydrated complexes dominate in phosphate–perchlorate acid solutions, 4M(H, Na)ClO4, at of 5 × 10–2to 4 × 10–1M. Equations that describe the total electrode reaction are proposed. Decreasing the concentration of free hydrogen ions from 3 to 0.12 M results in the deprotonation of TiO(H2PO4)+complexes and the formation of TiO(HPO4) complexes. Equilibrium constants for reactions of the formation of Ti(IV) monophosphate complexes and the protonation of TiO(HPO4) complex are calculated.  相似文献   

13.
Optical transmittance in the range from 200 nm to 1100 nm is measured for fresh and γ-irradiated thermally evaporated chalcogenide films of GeSe3, Sb2Se3, ZnSe, (GeSe3)80(Sb2Se3)20 and (GeSe3)70(Sb2Se3)10(ZnSe)20. The effect of ZnSe incorporation with both GeSe3, Sb2Se3 results in amorphous γ-radiation sensitive (GeSe3)70(Sb2Se3)10(ZnSe)20 composition as obtained from the estimated optical parameters. Optical energy gap, Eg, for (GeSe3)70(Sb2Se3)10(ZnSe)20 film shows a noticeable decrease from 1.81 eV at 0 kGy to 1.52 eV at 690 kGy and conversely the corresponding band tail width, Ee, increases from 0.123 eV at 0 kGy to 0.138 eV at 690 kGy. By contrast, the estimated values of Eg and Ee for (GeSe3)80(Sb2Se3)20 compositions, show no change with different γ-irradiation doses in the same range. The obtained results could be explained in terms of the band edge shift into the energy gap due to either the formation of localized states at the edges or weakening in the composition cohesive energy as reformation of new weaker bonds appear.  相似文献   

14.
Synthesis, Crystal Structure, and Phase Transition of Se4(MoOCl4)2 Dark green, very air sensitive crystals of Se4(MoOCl4)2 are formed from selenium and MoOCl4 at 190°C in a sealed, evacuated glass ampoule in quantitative yield. The structure is built of nearly square planar Se42+ ions and centrosymmetric dimeric MoOCl4? ions which are linked by bridging Cl atoms. At ?21°C Se4(MoOCl4)2 undergoes a reversible solid state phase transition of first order. Structure determinations at ?70°C and 23°C show that during the phase transition the structures of the ions remain unchanged, while the orientations of the ions with respect to each other change in such a way that in the low temperature form the Se42+ ions obtain a higher coordination number by Cl and O atoms of neighboring MoOCl4? ions.  相似文献   

15.
A platinum-lined, flowing autoclave facility was used to investigate the solubility behavior of titanium dioxide (TiO2) in aqueous sodium phosphate, sodium hydroxide and ammonium hydroxide solutions between 17 and 288°. Baseline Ti(IV) solubilities were found to be on the order of one nanomolal, which were enhanced by the formation of anionic hydroxo- and phosphato-complexes. The measured solubility behavior was examined via a titanium(IV) ion hydrolysis/complexing reaction equilibria were obtained from a least squares analysis of the data. The existence of three new Ti(IV) ion complexes is reported for the first time: Ti(OH)4(HPO4)2–, Ti(OH)5(H2PO4)2– and Ti(OH)5(HPO4)3–. The triply-charged anionic complex was the dominant Ti(IV) species in concentrated, alkaline phosphate solutions at elevated temperatures. This complex is expected to exhibit C.N.=4 (i.e., Ti(OH)2OPO 4 3– ). A summary of thermochemical properties for species in the systems TiO2-H2O and TiO2-P2O5-H2O is also provided.  相似文献   

16.
Summary 2-Pyridylphenylacetonitrile (ppa) is oxidized by iron(III) chloride in dry ethanol to 1,2-dicyano-1,2-di(phenyl)-1,2-(2-pyridyl)ethane (dcppe). When 1,2-dichloroethane or ether are used as solvents, a 31 complex of dcppe with iron trichloride, [(FeCl3)3(dcppe)] is obtained.Titanium(IV), vanadium(IV) and chromium(III) chlorides react with ppa and dcppe, giving complexes of general formulae [MCl4(ppa)] (M = Ti or V), [CrCl3(ppa)n] (n = 2 or 3), [(MCl4)2(dcppe)] (M = Ti or V) and [CrCl3(dcppe)].  相似文献   

17.
The reactions of SnMe3Cl with salts of the cluster anionic complexes [Re6Q8(CN)6]4? (Q = S, Se) gave novel complexes [{(SnMe3)2(OH)}2{SnMe3}2{Re6S8(CN)6}] (I), (Me4N)2[{SnMe3(H2O)}2{Re6Se8(CN)6}] (II), [{(SnMe2)43-O)}2{Re6Se8(CN)6}] (III), and [(SnMe2)43-O)22-OH)2(H2O)2][{SnMe3 2{Re6Se8(CN)6}] (IV). The structures of I–IV were determined by X-ray diffraction. Compounds I, IV have the chain structures with the CN-SnMe3-NC bridges between the cluster anions [Re6Q8(CN)6]4?. Compound II contains isolated fragments {SnMe3(H2O)}2{Re6Se8(CN)6}2?. In the polymer framework of compound III, the cluster anionic complexes [Re6Se8(CN)6]4? are bound by the complex cations [(SnMe2)43-O)2]4+ formed due to the hydrolysis of the initial (SnMe3)Cl.  相似文献   

18.
[PW11O39]7– heteropolyanion (HPA) stabilizes Ti(IV) in aqueous solution at Ti:PW11 ratios from 1 to 12 and pH 1–3. Ti(IV) is completely precipitated under these conditions in the absence of HPA. Differential dissolution phase analysis, optical, IR,31P and17O NMR spectra show that one Ti(IV) ion is incorporated into the Keggin lattice. The other ions, most probably, are located on the HPA surface in the form of oligomeric hydroxo fragments: [PW11TiIVO40·Tin–1 IVOxHy]k–. Both types of Ti(IV) ions bind peroxo groups on interaction of the complex with H2O2.  相似文献   

19.
Numerous commonly used analytical methods allow only determination of a total amount of selenium in a given sample. Electroanalytical methods as well as those based on hydride generation or on formation of piazselenol allow only determination of Se(IV). To determine Se(VI) by these procedures, present alone or in mixtures with Se(IV), it is first necessary to convert Se(VI) to Se(IV). Such conversion is effective in the presence of excess of halides in acidic media or by photoreduction. In the often used conversion of Se(VI) in the presence of chlorides or less frequently of that of bromides, it has been assumed that the halide ion acts as a reducing agent. Kinetic studies of conversion of Se(VI) in acidic solutions containing an excess of bromide ions indicated that the rate determining first step of the reaction with Se(VI) is a nucleophilic substitution of the OH2+ group in the protonated form of H2SeO4 by bromide ions. For the overall reaction with rate −d[Se(VI)]/dt = k1[H+][Br]1.15[Se(IV)] the rate constant 1 × 10−3 L2 mol−2 s−1 was found. The following formation of Se(IV) from the bromo derivative is a fast reaction probably resulting in elimination of HBrO.  相似文献   

20.
Nd4N2Se3 and Tb4N2Se3: Two non‐isotypical Lanthanide(III) Nitride Selenides The non‐isotypical nitride selenides M4N2Se3 of neodymium (Nd4N2Se3) and terbium (Tb4N2Se3) are formed by the reaction of the respective rare‐earth metal with sodium azide (NaN3), selenium and the corresponding rare‐earth tribromide (MBr3) at 900 °C in evacuated silica ampoules after seven days. Each of them crystallizes monoclinically in the space group C2/c with Z = 4 for Nd4N2Se3 (a = 1300.47(4), b = 1009.90(3), c = 643.33(2) pm, β = 90.039(2)°) and in the space group C2/m with Z = 2 for Tb4N2Se3 (a = 1333.56(5), b = 394.30(2), c = 1034.37(4) pm, β = 130.377(2)°), respectively. The crystal structures differ fundamentally in the linkage of the structure dominating N3‐ centred (M3+)4 tetrahedra. In Nd4N2Se3, the [NNd4] units are edge‐linked to bitetrahedra which are cross‐connected to [N(Nd1)(Nd2)]3+ layers via their remaining four corners, whereas the [NTb4] tetrahedra in Tb4N2Se3 share cis‐oriented edges to form strands [N(Tb1)(Tb2)]3+. Both structures contain two crystallographically different M3+ cations, that show coordination numbers of six and seven (Nd4N2Se3) or twice six (Tb4N2Se3), respectively, relative to the anions (N3‐ und Se2‐). Each of the two independent kinds of Se2‐ anions provide the three‐dimensional linkage as well as the charge balance. The particular axial ratio a/c and the monoclinic reflex angle offer two choices for fixing the unit cell of Tb4N2Se3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号