首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
A nondestructive method was developed for grafting and retrieving polymer brushes from single‐walled carbon nanotubes (SWCNT)s based on mussel‐inspired chemistry. Thermo‐responsive polymer brushes were grafted on SWCNTs by coating the tubes with polydopamine as a reactive underlayer and sequential surface‐initiated atom transfer radical polymerization of oligo(ethylene glycol) methacrylate (OEGMA, Mn = 475) and 2‐(2'‐methoxyethoxy)ethyl methacrylate (MEO2MA). Copolymer brushes were retrieved from the SWCNTs using 1 M NaOH to destroy the crosslinked polydopamine coating, and after that, the pristine properties of the SWCNTs were preserved. The low critical solution temperature (LCST) and molecular weight of the copolymer were measured using a nephelometer and gel permeation chromatograph, respectively. The loading and release behavior of Rhodamine 6G on responsive polymer‐grafted SWCNTs demonstrates that the copolymer brushes confer the SWCNTs an LCST dependence. This method can accurately confirm the molecular weights and polydispersity of stimuli‐responsive polymers grafted on any other nanoparticles and predict their controlled release behavior. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1807–1814  相似文献   

2.
The hairy poly(methacrylic acid‐co‐divinylbenzene)‐g‐poly(N‐isopropylacrylamide) (P(MAA‐co‐DVB)‐g‐PNIPAm) nanocapsules with pH‐responsive P(MAA‐co‐DVB) inner shell and temperature‐responsive PNIPAm brushes were prepared by combined distillation–precipitation copolymerization and surface thiol‐ene click grafting reaction using 3‐(trimethoxysilyl)propyl methacrylate‐modified silica (SiO2‐MPS) nanospheres as a sacrificial core material. The well‐defined PNIPAm was synthesized by a reversible addition fragmentation chain transfer (RAFT) polymerization. The chain end was converted to a thiol by chemical reduction. The PNIPAm was integrated into the nanocapsules via thiol‐ene click reaction. The surface thiol‐ene click reaction conduced to tunable grafting density of PNIPAm brushes. The grafting densities decreased from 0.70 chains nm?2 to 0.15 chains nm?2 with increasing the molecular weight of grafted PNIPAm chains. Using water soluble doxorubicin hydrochloride (DOX·HCl) as a model molecular, the tunable shell permeability of the nanocapsule was investigated in detail. The permeability constant can be tuned by controlling the thickness of the P(MAA‐co‐DVB) inner shell, the grafting density of PNIPAm brushes, and the environmental pH and temperature. The tunable shell permeability of these nanocapsules results in the release of the loaded guest molecules with manipulable releasing kinetics. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2202–2216  相似文献   

3.
A practical synthetic route to polybasic, polyamine, hyperbranched grafts using commercially available polyethyleneimine (PEI) and cyanuric chloride as a coupling agent is described. The grafting process was followed by XPS spectroscopy, TGA analysis, ATR‐IR spectroscopy, acid–base titration, and by 13C CP‐MAS NMR spectroscopy. In the case of silica gel, thermal gravimetric analyses showed that a 35 wt % loading of graft could be obtained. Acid–base titration of hyperbranched PEI grafts on silica gel and oxidized polyethylene powder showed the ion‐exchange capacities of these PEI‐grafted substrates were 1.00 and 0.17 mmol of base/g of solid, respectively. Although the focus of the paper is on grafting on silica gel, the influence of the kind of support and solvent on the grafting process and the ion‐exchange capacity was examined. Water was a good solvent for PEI grafting onto silica gel, but a more hydrophobic polyethylene support required the use of dichloromethane as a solvent for PEI graft synthesis. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4654–4665. 2005  相似文献   

4.
A series of supramolecular soft materials with hydrogen bonded transient networks was prepared by blending carboxy‐terminated telechelic poly(ethyl acrylate) (PEA‐(COOH)2) and polyethyleneimine (PEI). Effects of PEA‐(COOH)2 molecular weight (MPEA) and the blend ratio on the viscoelastic properties were investigated by rheological and small angle X‐ray scattering measurements. Rubbery plateau appeared by adding PEI due to network formation with ionic hydrogen bonded crosslinks between amines on PEI and carboxylic acids on PEA‐(COOH)2. The highest temperature of a storage modulus‐loss modulus crossover as well as the highest flow activation energy was attained at a certain mole ratio of amines to carboxylic acids, irrelevant to MPEA, indicating optimized supramolecular networks were achieved by stoichiometric balance of two functional groups. Since telechelic PEA‐(COOH)2 serves as a network strand, the plateau modulus was inversely proportional to MPEA, which was consistent with the correlation length between crosslinks estimated by X‐ray scattering measurements. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 755–764  相似文献   

5.
Multifunctional, biocompatible, and brush‐grafted poly(ethylene glycol)/poly(ε‐caprolactone) (PEG/PCL) nanoparticles have been synthesized, characterized, and used as vehicles for transporting hydrophobic substances in water. For anchoring the polymer mixed brushes, we used magnetic‐silica particles of 40 nm diameter produced by the reverse microemulsion method. The surface of the silica particle was functionalized with biocompatible polymer brushes, which were synthesized by the combination of “grafting to” and “grafting from” techniques. PEG was immobilized on the particles surface, by “grafting to,” whereas PCL was growth by ROP using the “grafting from” approach. By varying the synthetic conditions, it was possible to control the amount of PCL anchored on the surface of the nanoparticles and consequently the PEG/PCL ratio, which is a vital parameter connected with the arrangement of the polymer brushes as well as the hydrophobic/hydrophilic balance of the particles. Thus, adjusting the PEG/PCL ratio, it was possible to obtain a system formed by PEG and PCL chains grafted on the particle's surface that collapsed in segregated domains depending on the solvent used. For instance, the nanoparticles are colloidally stable in water due to the PEG domains and at the same time are able to transport, entrapped within the PCL portion, highly water‐insoluble drugs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2966–2975  相似文献   

6.
We report the coating of maghemite (γ‐Fe2O3) nanoparticles with poly(ε‐caprolactone) (PCL) through a covalent grafting to technique. ω‐Hydroxy‐PCL was first synthesized by the ring‐opening polymerization of ε‐caprolactone with aluminum isopropoxide and benzyl alcohol as a catalytic system. The hydroxy end groups of PCL were then derivatized with 3‐isocyanatopropyltriethoxysilane in the presence of tetraoctyltin. The triethoxysilane‐functionalized PCL macromolecules were finally allowed to react on the surface of maghemite nanoparticles. The composite nanoparticles were characterized by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Effects of the polymer molar mass and concentration on the amount of polymer grafted to the surface were investigated. Typical grafting densities up to 3 μmol of polymer chains per m2 of maghemite surface were obtained with this grafting to technique. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6011–6020, 2004  相似文献   

7.
A novel method of fabricating pore‐filled membranes has been developed by coating a hydrophobic polyolefinic microfiltration membrane with polyethylenimine (PEI) to produce a chemically active surface. An evaporative coating technique was used to coat the internal surface of a polyolefinic membrane with PEI in chloroform (CHCl3). The coated PEI was then crosslinked by naphthalene‐1,4‐disulfonyl chloride in carbon tetrachloride (CCl4). The incorporation of the PEI coating changed the properties of the base membrane from hydrophobic to relatively hydrophilic; the nitrogens could be titrated, and the coating could not be washed out. 4,4′‐Azo‐bis(4‐cyanovaleryl chloride), a heat‐sensitive radical source, was incorporated into the coated membrane. The coated membrane, with incorporated azo compound, was heated to 75 °C in the presence of acrylic acid, 4‐(vinylpyridine), or styrene to give the corresponding grafted, pore‐filled membranes. The membranes exhibited hydraulic fluxes and pH valve effects consistent with molecular brushes grafted within the pores of the membranes. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 242–250, 2002  相似文献   

8.
This article reports the synthesis of atom transfer radical polymerization (ATRP) of active initiators from well‐defined silica nanoparticles and the use of these ATRP initiators in the grafting of poly(n‐butyl acrylate) from the silica particle surface. ATRP does not require difficult synthetic conditions, and the process can be carried out in standard solvents in which the nanoparticles are suspended. This “grafting from” method ensures the covalent binding of all polymer chains to the nanoparticles because polymerization is initiated from moieties previously bound to the surface. Model reactions were first carried out to account for possible polymerization in diluted conditions as it was required to ensure the suspension stability. The use of n‐butyl acrylate as the monomer permits one to obtain nanocomposites with a hard core and a soft shell where film formation is facilitated. Characterization of the polymer‐grafted silica was done from NMR and Fourier transform infrared spectroscopies, dynamic light scattering, and DSC. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4294–4301, 2001  相似文献   

9.
Superparamagnetic and biodegradable/biocompatible core–corona nanocomposite particles were prepared by ring‐opening polymerization of ?‐caprolactone initiated from the surface of maghemite. As was done in a previous work, an aminosilane coupling agent was chosen as the coinitiator and immobilized at the surface of the maghemite particles to allow the growth of the poly(?‐caprolactone) (PCL) chains from the solid surface. Two different catalytic systems based on aluminum and tin alkoxides were investigated. Whatever the catalyst used, diffuse reflectance Fourier transform spectroscopy brought evidence for polymer anchoring through a covalent bond, whereas thermogravimetric analysis attested to the presence of high amounts of PCL around the maghemite. Magnetization measurements proved that the nanocomposites kept their superparamagnetic properties after coating. The polymer contents obtained by this grafting‐from route were compared with the results obtained by a more classical grafting‐to process. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3221–3231, 2005  相似文献   

10.
Functionalized platinum nanoparticles (PtNPs) possess catalytic properties towards H202 oxidation, which are of great interest for the elaboration of electrochemical biosensors. To improve the understanding of phenomena involved in such systems, we designed platinum‐polymer‐enzyme model nanostructures according to a bottom–up approach. These structures have been elaborated from elementary building units based on polymer‐grafted PtNPs obtained from surface initiated‐atom transfer radical polymerization. This paper describes the polymerization of ter‐butyl methacrylate from PtNPs and its subsequent hydrolysis to obtain a water‐soluble corona, followed by an activated ester modification to introduce an enzyme (glucose oxidase). The structure of the objects, the molecular weight and the grafting density of the polymer chains were principally elucidated by small angle neutron scattering (SANS). After the grafting of the enzyme, the final hybrid structures were characterized by both microscopy and SANS to attest for the covalent grafting of the enzyme. Composition and enzyme activity of the nanohybrid objects, have also been determined by UV spectroscopy. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
This work assessed the relative effects of processing conditions and interfacial interactions on the structure and properties of PBS/fumed silica nanocomposites. Rheology and scattering were used to investigate the dispersion state of silica particles with different surface treatments in nanocomposites produced by ultra‐high speed twin‐screw extrusion. Structural parameters of the silica, such as fractal dimension and Fisher exponent, were estimated by low‐frequency rheology responses and lower q scattering data. This study demonstrates that both decreased bulk polymer properties and improved filler suspension caused by high shear compounding determine the final properties of these PBS based nanocomposites. While the molecular weight of bulk polymer matrix was significantly reduced, the extreme shear increased the probability of forming percolated clusters, leading to remarkable reinforcement (up to 4000%) as evidenced by the low‐frequency rheological response. Further, the improvement in dispersion was enhanced when the filler was functionalized with a compatibilizing surface treatment. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1820–1828  相似文献   

12.
To graft polymers with controlled molecular weight and narrow molecular weight distribution, the grafting of polymers onto ultrafine silica surface by the termination of living polymer cation with amino groups introduced onto the surface was investigated. The introduction of amino or N-phenylamino groups onto the silica surface was achieved by the treatment of silica with γ-aminopropyltriethxysilane or N-phenyl-γ-aminopropyltrimethoxysilane. It was found that these amino groups on silica are readily reacted with living poly(isobutyl vinyl ether) (polyIBVE), which was generated with CF3COOH/ZnCl2 initiating system, and polyIBVE with controlled molecular weight and narrow molecular weight distribution is grafted onto the surface. By the termination of living poly(2-methyl-2-oxazoline), which was generated with methyl p-toluenesulfonate initiator, with amino groups on silica, polyMeOZO was also grafted onto the surface. The percentage of grafting of polymer onto the silica surface decreased with increasing molecular weight of the living polymer, because the steric hindrance of silica surface increases with increasing molecular weight of living polymer. Polymer-grafted silica gave a stable dispersion in a good solvent for grafted chains. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
Two types of silica: precipitated (P, prepared in non‐polar media, a new type, submicrometer sized) and fumed (F, nanosized), both unmodified and surface modified are investigated as functional fillers for potential applications in nanocomposites with poly(2‐hydroxyethyl methacrylate) matrix. Special attention is paid to the kinetics of composite formation in an in situ photopolymerization process. Silica‐containing formulations polymerize faster; this effect is much stronger for silica P having much larger particle size than silica F. Surface treatment leads to further acceleration of the polymerization in case of silica P but to retardation in case of silica F; the effect of modification of the filler surface on properties of composites is different for each of the silicas. The obtained results are discussed in terms of effects of curvature of silica particles, surface properties, solvation cell, interphase region, viscosity changes, and morphology of the resulting composites. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3472–3487  相似文献   

14.
Hyperbranched polyethyleneimine (hb‐PEI) is used as polymeric scaffold to synthesize new PEI‐g‐polymethylmethacrylate (PEI‐g‐PMMA) block copolymers, consisting of a hyperbranched, partially quarternized cationic core, and PMMA‐arms. The arms are grafted to the PEI scaffold by means of the “grafting to” method. Ammonium groups, covalently bond to the hyperbranched core, provide good adhesion to negatively charged surfaces, even in case of low‐surface charges. The PMMA strands provide compatibility of the macromolecules to PMMA matrices, hence generating potential dispersants, and compatibilizers for PMMA. A peculiar association behavior in organic solution is observed as supported by dynamic light scattering and DOSY measurements. First evidences of the applicability of the macromolecules as dispersants to prepare PMMA‐nanocomposites are given. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3700–3715  相似文献   

15.
The ethylene polymerization was catalyzed by the intercalated montmorillonite with the nickel complex, [ArN?C(Me)? C(Me)?NAr]NiBr2 (Ar = 2,6‐C6H3 (i‐Pr)2). Polymer with low melting point and high molecular weight was produced at the early stage of polymerization followed by formation of polymer with high melting point and low molecular weight. It is proposed that the gallery of silicate lowers the propagation rate of polymerization and frequency of “chain walking” process of nickel complex anchored inside the gallery, which produces polymer with low molecular weight and low branching, whereas the nickel complex immobilized on the surface of silicate generates polymer with high molecular weight and high branching. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5506–5511, 2005  相似文献   

16.
A one‐step process is reported to directly synthesize blends of poly(trimethylene carbonate) (PTMC) with a modified granular starch. Trimethylene Carbonate (TMC) ring‐opening polymerization is performed in the presence of native starch particles in bulk conditions at 150 °C and the efficiency of metal‐free organic catalysts (TBD and phosphazene superbases P1‐t‐Oct, P2‐t‐bu, and P4‐t‐bu) are investigated to replace the organo‐metallic stannous octanoate initiator. TMC monomer is successively converted into PTMC and the robustness of organic catalysts is highlighted with significant activities at very low concentrations (<100 ppm), where stannous octanoate is inefficient. Reactivity of starch toward TMC ROP is deeply investigated by NMR techniques and a starch‐graft‐PTMC is indirectly evidenced. Starch substitution degree reaches 0.9% indicating that PTMC grafting only occurs at the surface of swollen granular starch. PTMC graft length from the starch surface remained low in the range 2–12 and model ROP reactions highlight the role of TMC hydrolysis on PTMC graft length. Despite low PTMC grafts, a fine dispersion of intact starch particles into the PTMC matrix is evidenced. Consequently, metal‐free organic catalysts at low concentrations are promising candidates for synthesizing blends of PTMC with high loadings of surface‐modified starch (32% by weight) in 2 min within a one‐step process. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 493–503  相似文献   

17.
The effects of methyl methacrylate (MMA) grafting and in situ formation of silica particles on the morphology and mechanical properties of natural rubber latex (NRL) were investigated. MMA grafting on NRL was carried out using cumyl hydroxy peroxide/tetraethylene pentamine (CHPO/TEPA) as a redox initiator couple. The grafting efficiency of the grafted NR was determined by solvent extractions and the grafted NRL was then mixed with tetraethoxysilane (TEOS), a precursor of silica, coated by adherence to a glass surface to form a film and cured at 80°C. The resultant products were characterized by FT‐IR and transmission electron microscopy. The influence of varying the MMA monomer weight ratio on the surface morphology of the composites was investigated by scanning electron and atomic force microscopy. The PMMA (poly MMA) grafted NRL particles were obtained as a core/shell structure from which the NR particles were the core seed and PMMA was a shell layer. The silane was converted into silica particles by a sol–gel process which was induced during film drying at 80°C. The silica particles were fairly evenly distributed in the ungrafted NR matrix but were agglomerated in the grafted NR matrix. The root‐mean‐square roughness increased with an increasing weight ratio of MMA in the rubber. The in situ silica particles in the grafted NR matrix slightly increased both the modulus and the tear strength of the composite film. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
A series of new functional poly(ethylene‐co‐vinyl alcohol)‐g‐polystyrene graft copolymers (EVAL‐g‐PS) with controlled molecular weight (Mn = 38,000–94,000 g mol?1) and molecular weight distribution (Mw/Mn = 2.31–3.49) were synthesized via a grafting from methodology. The molecular structure and component of EVAL‐g‐PS graft copolymers were confirmed by the analysis of their 1H NMR spectra and GPC curves. The porous films of such copolymers were fabricated via a static breath‐figure (BF) process. The influencing factors on the morphology of such porous films, such as solvent, temperature, polymer concentration, and molecular weight of polymer were investigated. Ordered porous film and better regularity was fabricated through a static BF process using EVAL‐g‐PS solution in CHCl3. Scanning electron microscopy observation reveals that the EVAL‐g‐PS graft copolymer is an efficient compatibilizer for the blend system of low‐density polyethylene/polystyrene. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 516–524  相似文献   

19.
In this report, we synthesized poly(N‐vinyl imidazole) (PNVI) grafted silica nanoparticles (SiNP) by using RAFT polymerization through grafting‐from approach to demonstrate that the self‐assembled structure of SiNP is the key diving force in improving physical properties of SiNP based nanocomposites. In a multistep synthetic process, well‐defined PNVI chains with tunable molecular weights and surface chain densities were grown from the RAFT agent anchored SiNP surface using N‐vinyl imidazole (NVI) as a monomer. Spectroscopic and thermal analysis confirmed surface grafting of PNVI on SiNP surface and the amount of grafted PNVI chins were also quantified. The mean diameter of the PNVI grafted SiNP (PNVI‐g‐SiNP) particles altered between 50 and 100 nm with the variation of PNVI chain lengths. The present approach is metal‐catalyst free, straight forward, and provides PNVI functionalized SiNP in a simple manner in comparison to the reported methods. Further, these PNVI‐g‐SiNP particles were used as a nanofiller to prepare nanocomposites with Poly(4,4′‐diphenylether‐5,5′‐bibenzimidazole) (OPBI). These nanocomposites displayed significantly higher mechanical, proton conductivity and less acid leaching properties than the pristine OPBI. The anisotropic self‐assembled ordered structure formation of nanofillers in the nanocomposites believed to be the driving force for the enhanced physical properties. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 365–375  相似文献   

20.
Epoxide and aldehyde end‐functionalized poly(ethylene glycol)s (PEGs) (Mw = 400, 1000, 3400, 5000, and 20,000) were grafted to poly(ethylene terephthalate) (PET) film substrates that contained amine or alcohol groups. PET‐PAH and PET‐PEI were prepared by reacting poly(allylamine) (PAH) and polyethylenimine (PEI) with PET substrates, respectively; PET‐PVOH was prepared by the adsorption of poly(vinyl alcohol) (PVOH) to PET substrates. Grafting was characterized and quantified by the increase of the intensity of the PEG carbon peak in the X‐ray photoelectron spectra. Grafting yield was optimized by controlling reaction parameters and was found to be substrate‐independent in general. Graft density consistently decreased as PEG chain length was increased. This is likely due to the higher steric requirement of higher molecular weight PEG molecules. Water contact angles of surfaces containing long PEG chains (3400, 5000, and 20,000) are much lower than those containing shorter PEG chains (400 and 1000). This indicates that longer PEG chains are more effective in rendering surfaces hydrophilic. Protein adsorption experiments were carried out on PET‐ and PEG‐modified derivatives using collagen, lysozyme, and albumin. After PEG grafting, the amount of protein adsorbed was reduced in all cases. Trends in surface requirements for protein resistance are: surfaces with longer PEG chains and higher chain density, especially the former, are more protein resistant; PEG grafted to surfaces containing branched or network polymers is not effective at covering the underlying substrate, and thus does not protect the entire surface from protein adsorption; and substrates containing surface charge are less protein‐resistant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5389–5400, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号