首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
A new 1,1‐disubstituted‐2‐vinylcyclopropane monomer bearing a ketone and a pentafluorophenyl ester was synthesized and successfully polymerized to yield a polymer with two side chain moieties readily available for post‐polymerization modification. After a quantitative modification of the pentafluorophenyl moiety with amines, a subsequent second functionalization reaction was successfully performed on the ketone moiety leading to a double side‐chain functionalized polymer using two different routes. The first route utilized hydrazide and hydroxylamine derivatives leading to a ketone conversion of 25 to 85%. In the second route, the ketone moiety was first reduced to alcohol (reduction conversion up to 100%) and then converted into the corresponding ester or urethane using acyl halides or isocyanates, respectively, with a conversion ratio of up to 90%. A library of functionalized polymers was synthesized to confirm the effectiveness of this approach. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2841–2849  相似文献   

2.
A novel reactive polymer containing cyanate groups in the side chain was prepared by free radical polymerization of a cyanate‐containing monomer, 2‐(4‐cyanatophenyl)ethyl methacrylate ( 1 ). The monomer 1 and its polymer, poly[2‐(4‐cyanatophenyl)ethyl methacrylate] (PCPMA), were stable under the air for a long period. The copolymerization of 1 and methyl methacrylate provided the corresponding copolymers with various cyanate contents. The availability of the cyanate‐containing polymers as a reactive polymer was investigated. Model reaction using 4‐cyanatotoluene revealed that a cyanate group reacted with aliphatic amines, whereas no reaction occurred in the presence of water, alcohols, and aromatic amines under mild conditions. Post‐functionalization of PCPMA was demonstrated using aliphatic amines or diamines. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 699–706  相似文献   

3.
Polymers containing electrophilic moieties, such as activated esters, epoxides, and alkyl halides, can be readily modified with a variety of nucleophiles to produce useful functional materials. The modification of epoxide‐containing polymers with amines and other strong nucleophiles is well‐documented, but there are no reports on the modification of such polymers with alcohols. Using phenyloxirane and glycidyl butyrate as low molecular weight model compounds, it was determined that the acid‐catalyzed ring‐opening of aryl‐substituted epoxides by alcohols to form β‐hydroxy ether products was significantly more efficient than that of alkyl‐substituted epoxides. An aryl epoxide‐type styrenic monomer, 4‐vinylphenyloxirane (4VPO), was synthesized in high yield using an improved procedure and then polymerized in a controlled manner under reversible addition‐fragmentation chain‐transfer (RAFT) polymerization conditions. A successful chain extension with styrene proved the high degree of chain‐end functionalization of the poly4VPO‐based macro chain transfer agent. Poly4VPO was modified with a library of alcohols and phenols, some of which contained reactive functionalities, e.g., azide, alkyne, allyl, etc., using either CBr4 (in PhCN at 90 °C for 2–3 days) or BF3 (in CH2Cl2 at ambient temperature over 30 min) as the catalyst. The resulting β‐hydroxy ether‐functionalized homopolymers were characterized using size exclusion chromatography, 1H NMR and IR spectroscopy, and thermal gravimetric analysis. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1132–1144  相似文献   

4.
In this work, pendant groups with both furan and maleimide moieties were incorporated into a polymethacrylate copolymer with lauryl methacrylate as comonomer to yield a one‐system Diels–Alder (DA) polymer. A combined Fourier transform infrared (FTIR) spectroscopy and rheological study was performed to quantify the extent of the reversible DA reaction and the resulting changes in mechanical properties of the polymer. The kinetics of the retro‐Diels–Alder (rDA) reaction was studied at different temperatures to determine an enthalpy of activation. Control polymers with only one functional moiety, that is, the furan or maleimide, were also synthesized to study the differences in viscoelastic behavior and the absence of self‐healing. Microscratch tests were performed to obtain information about the disappearance of well‐defined intentional surface scratches under different healing conditions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1669–1675  相似文献   

5.
A series of side-chain liquid-crystalline polymers (SCLCPs) containing triphenylene mesogen, in which the long alkyl tail Tp connected directly with main chain, were synthesized successfully. The chemical structures of the monomers were confirmed by 1H NMR and mass spectrometry. The phase behaviors of polymers were investigated by a combination of techniques, including DSC, POM, 1D/2D WAXD, and SAXS. The experimental results suggested that the type of main chain played an important role in the LC phase structures of these polymers. Because of the steric effects of side chains and the coupling effects between the Tp moieties and the main chains, all the polymers exhibited columnar phase. However, the SCLCPs with poly(vinyl benzene methyl ether) or polynorbornene backbone displayed hexagonal columnar phase, while those with polyacrylate or polymethacrylate backbone presented columnar nematic phase, and the one with poly(vinyl benzoate) main chain showed rectangular columnar phase. Moreover, the clearing temperatures (Ti) changed with change in main chain. Especially, the Ti of the SCLCP with polymethacrylate backbone was above 300 °C. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 754–766  相似文献   

6.
A number of classes of polynorbornenes containing cationic iron moieties within their side chains were prepared via ring‐opening metathesis polymerization with a ruthenium‐based catalyst. The iron‐containing polymers displayed excellent solubility in polar organic solvents. The weight‐average molecular weights of these polymeric materials were estimated to be in the range of 18,000–48,000. Thermogravimetric analysis of these polymers showed two distinct weight losses. The first weight loss was in the range of 204–260 °C and was due to the loss of the metallic moieties, whereas the second weight loss was observed at 368–512 °C and was due to the degradation of the polymer backbone. Cyclic voltammetry studies of the iron‐containing polymers showed that the 18 e? cationic iron centers underwent a reduction to give the neutral 19 e? complexes at half‐wave potential (E1/2) = ?1.105 V. Photolysis of the metallated polymers led to the isolation of the norbornene polymers in very good yields. Differential scanning calorimetry studies showed a sharp increase in the glass‐transition temperatures up to 91 °C when rigid aromatic side chains were incorporated into the norbornene polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3053–3070, 2006  相似文献   

7.
A novel combined main‐chain/side‐chain liquid crystalline polymer based on mesogen‐jacketed liquid crystal polymers (MJLCPs) containing two biphenyls per mesogenic core of MJLCPs main chain, poly(2,5‐bis{[6‐(4‐butoxy‐4′‐oxy‐biphenyl)hexyl]oxycarbonyl}styrene) (P1–P8) was successfully synthesized via atom transfer radical polymerization (ATRP). The chemical structure of the monomer was confirmed by elemental analysis, 1H NMR, and 13C NMR. The molecular characterizations of the polymer with different molecular weights (P1–P8) were performed with 1H NMR, gel permeation chromatography (GPC), and thermogravimetric analysis (TGA). Their phase transitions and liquid‐crystalline behaviors of the polymers were investigated by differential scanning calorimetry (DSC) and polarized optical microscope (POM). We found that the polymers P1–P8 exhibited similar behavior with three different liquid crystalline phases upon heating to or cooling in addition to isotropic state, which should be related to the complex liquid crystal property of the side‐chain and the main‐chain. Moreover, the transition temperatures of liquid crystalline phases of P1–P8 are found to be dependent on the molecular weight. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7310–7320, 2008  相似文献   

8.
We report the first tunable bifunctional surface of silica–alumina‐supported tertiary amines (SA–NEt2) active for catalytic 1,4‐addition reactions of nitroalkanes and thiols to electron‐deficient alkenes. The 1,4‐addition reaction of nitroalkanes to electron‐deficient alkenes is one of the most useful carbon–carbon bond‐forming reactions and applicable toward a wide range of organic syntheses. The reaction between nitroethane and methyl vinyl ketone scarcely proceeded with either SA or homogeneous amines, and a mixture of SA and amines showed very low catalytic activity. In addition, undesirable side reactions occurred in the case of a strong base like sodium ethoxide employed as a catalytic reagent. Only the present SA‐supported amine (SA–NEt2) catalyst enabled selective formation of a double‐alkylated product without promotions of side reactions such as an intramolecular cyclization reaction. The heterogeneous SA–NEt2 catalyst was easily recovered from the reaction mixture by simple filtration and reusable with retention of its catalytic activity and selectivity. Furthermore, the SA–NEt2 catalyst system was applicable to the addition reaction of other nitroalkanes and thiols to various electron‐deficient alkenes. The solid‐state magic‐angle spinning (MAS) NMR spectroscopic analyses, including variable‐contact‐time 13C cross‐polarization (CP)/MAS NMR spectroscopy, revealed that acid–base interactions between surface acid sites and immobilized amines can be controlled by pretreatment of SA at different temperatures. The catalytic activities for these addition reactions were strongly affected by the surface acid–base interactions.  相似文献   

9.
Well‐defined polystyrene‐ (PSt) or poly(ε‐caprolactone) (PCL)‐based polymers containing mid‐ or end‐chain 2,5 or 3,5‐ dibromobenzene moieties were prepared by controlled polymerization methods, such as atom transfer radical polymerization (ATRP) or ring opening polymerization (ROP). 1,4‐Dibromo‐2‐(bromomethyl)benzene, 1,3‐dibromo‐5‐(bromomethyl)benzene, and 1,4‐dibromo‐2,5‐di(bromomethyl)benzene were used as initiators in ATRP of styrene (St) in conjunction with CuBr/2,2′‐bipyridine as catalyst. 2,5‐Dibromo‐1,4‐(dihydroxymethyl)benzene initiated the ROP of ε‐caprolactone (CL) in the presence of stannous octoate (Sn(Oct)2) catalyst. The reaction of these polymers with amino‐ or aldehyde‐functionalized monoboronic acids, in Suzuki‐type couplings, afforded the corresponding telechelics. Further functionalization with oxidable groups such as 2‐pyrrolyl or 1‐naphthyl was attained by condensation reactions of the amino or aldehyde groups with low molecular weight aldehydes or amines, respectively, with the formation of azomethine linkages. Preliminary attempts for the synthesis of fully conjugated poly(Schiff base) with polymeric segments as substituents, by oxidative polymerization of the macromonomers, are presented. All the starting, intermediate, or final polymers were structurally analyzed by spectral methods (1H NMR, 13C NMR, and IR). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 727–743, 2006  相似文献   

10.
Mesogen‐jacketed liquid crystalline polymers (MJLCPs) with both electron‐transport oxadiazole and hole‐transport thiophene in the side chain were reported for their promising electroluminescent property. Monomers of 2,5‐bis{5‐[(4‐alkoxyphenyl)‐1,3,4‐oxadiazole]thiophen‐2‐yl}styrene (M‐Cm, m is the number of the carbons in the alkoxy groups, m = 8,10) were synthesized and confirmed by 1H‐NMR, mass spectrometry, and elemental analysis. The corresponding polymers were successfully obtained and characterized by thermal analysis, optical spectroscopy, cyclic voltammetry, electroluminescent analysis, polarized light microscopy (PLM), and wide‐angle X‐ray diffraction (WAXD). The polymers exhibited high decomposition temperatures reaching 382 °C and high Tg's reaching 184 °C. The absorption spectra indicated that both the monomers and polymers had little aggregation in film than that in solution, and the absorption spectra of the polymers showed an obvious blue‐shift compared with those of the monomers. Both the monomers and the polymers had blue‐green emission, and the photoluminescence spectra of the polymers in film suggested the formation of excimer or exciplex. The polymers showed lower HOMO energy levels and LUMO energy levels than those of the MJLCPs containing oxadiazole unit reported before. Electroluminescence study with the device configuration of ITO/PEDOT/PVK/polymer/TPBI/Ca/Ag showed maximum brightness and current efficiency of 541 cd/m2 and 0.10 cd/A, which proved that the introduction of directly connected electron‐ and hole‐transport units could greatly improve the EL property of side‐chain conjugated polymers. The phase structures of the polymers were confirmed to be smectic A phase through the results of PLM and WAXD. The annealed samples emitted polarized photoluminescence at room temperature, which indicated potential utility for practical applications in display. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1502–1515, 2010  相似文献   

11.
Hydrosilylation of olefin groups at poly(ethylene glycol) chain ends catalyzed by Karstedt catalyst often results in undesired side reactions such as olefin isomerization, hydrogenation, and dehydrosilylation. Since unwanted polymers obtained by side reactions deteriorate the quality of end‐functional polymers, maximizing the hydrosilylation efficiency at polymer chain ends becomes crucial. After careful investigation of the factors that govern side reactions under various conditions, it was related that the short lifetime of the unstable Pt catalyst intermediate led to the formation of more side products under the inherently dilute conditions for polymers. Based on these results, two new chelating hydrosilylation reagents, tris(2‐methoxyethoxy)silane (5) and 2,10‐dimethyl‐3,6,9‐trioxa‐2,10‐disilaundecane (6), have been developed. It was demonstrated that the hydrosilylation efficiency at polymer chain ends was significantly increased by employing the internally coordinating hydrosilane 5. In addition, employment of the internally coordinating disilane species 6 in an addition polymerization with 1,5‐hexadiene by hydrosilylation reaction yielded a polymer with high molecular weight (Mn = 9300 g/mol), which was significantly higher than that (Mn = 2600 g/mol) of the corresponding polymer obtained with non‐chelating dihydrosilane, 1,1,3,3‐tetramethyldisiloxane. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 527–536  相似文献   

12.
Poly(ether)s (P‐1–P‐4) containing triazine groups in the main chain and pendant phenoxy groups in the side chain were synthesized by the polyaddition of bis(epoxide)s with 2,4‐di‐(p‐chlorophenoxy)‐6‐(diphenylamino)‐s‐triazine (DCTA) with quaternary onium salts or crown ether complexes as catalysts. The polyaddition of diglycidyl ether of bisphenol A with DCTA proceeded smoothly in chlorobenzene at 120 °C for 24 h to give P‐1 with a number‐average molecular weight of 24,800 in a 95% yield when tetraphenylphosphonium chloride (TPPC) was used as a catalyst; however, no reaction occurred without a catalyst under the same reaction conditions. Polyadditions of other bis(epoxide)s with DCTA also proceeded smoothly with 5 mol % TPPC as a catalyst in chlorobenzene to produce the corresponding polymers (P‐2–P‐4) in high yields under similar reaction conditions. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3604–3611, 2000  相似文献   

13.
New low‐temperature curable organic/inorganic hybrid polymers were designed and synthesized as gate dielectrics for organic thin‐film transistors (OTFTs). Allyl alcohols were introduced to polyhedral oligomeric silsesquioxane (POSS) via hydrosilyation to produce an alcohol‐functionalized POSS derivative (POSS‐OH). POSS‐OH was then reacted with hexamethoxymethylmelamine at carrying molar ratios at 80 °C in the presence of a catalytic amount of p‐toluenesulfonic acid to give highly cross‐linked network polymers (POSS‐MM). The prepared thin films were smooth and hard after the thermal cross‐linking reaction and had very low leakage currents (<10?8 A/cm2) with no significant absorption over the visible spectral range. Pentacene‐based OTFTs using the synthesized insulators as gate dielectric layers had higher hole mobilities (up to 0.36 cm2/Vs) than a device using thermally cross‐linked poly(vinyl phenol) and melamine as the gate dielectric layer (0.18 cm2/Vs). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3260–3268  相似文献   

14.
We report the synthesis and ion‐binding properties of four poly(crown‐ethers) displaying either one or two crown‐ethers (15‐crown‐5 or 18‐crown‐6) on every third carbon alongside the backbone. The polymers were synthesized by living anionic ring‐opening polymerization of disubstituted cyclopropane‐1,1‐dicarboxylates monomers. Cation binding of the polychelating polymers and corresponding monomers to Na+ and K+ was evaluated by picrate extraction and isothermal calorimetry titration. This novel family of poly(crown‐ethers) demonstrated excellent initial binding of the alkali ions to the polymers, with a higher selectivity for potassium. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2337–2345  相似文献   

15.
Highly efficient acetylation and benzoylation of alcohols, phenols, amines and thiols with acetic and benzoic anhydrides catalyzed by new and reusable zirconyl triflate, ZrO(OTf)2, is reported. The high catalytic activity of electron deficient ZrO(OTf)2 can be used for the acetylation and benzoylation of not only primary alcohols but also sterically-hindered secondary and tertiary alcohols with acetic and benzoic anhydrides. Acetylation of phenols with acetic and benzoic anhydrides was achieved to afford the desired acetates and benzoates efficiently. This catalyst also efficiently catalyzed the acetylation and benzoylation of amines and thiols whereby the corresponding amides and thioesters were obtained in good to excellent yields. This catalyst can be reused several times without loss of its activity.  相似文献   

16.
A facile synthetic route to prepare the dual‐functional molecule, 2,5‐bis(4′‐carboxyphenyl)styrene, was developed. The esterification of this compound with chiral alcohols, that is, (S)‐(+)‐sec‐butanol/(R)‐(?)‐sec‐butanol, (S)‐(+)‐sec‐octanol/(R)‐(?)‐sec‐octanol, and D ‐(+)‐menthol/L ‐(?)‐menthol, respectively, yielded three enantiomeric pairs of novel vinyl monomers, which underwent radical polymerization to obtain helical polymers with an excess screw sense. These polymers exhibited optical rotations as large as fourfold those of the corresponding monomers. Their helical conformations were quite stable as revealed by the almost unchanged chiroptical properties measured at different temperatures. The polymers with linear alkyl tails in the side‐groups formed irreversibly columnar nematic phases in melt although the corresponding monomers were not liquid crystalline. Whereas, the polymers with cyclic tails generated no mesophase. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2408–2421, 2009  相似文献   

17.
We have already found that the polymers, which are obtained by the polymerization of 4‐vinylphenyl isothoiocyanate after the zwitterion formation with cyclic amidines, are networked through the ionic interaction among the zwitterions becoming insoluble to various solvents. We report here on the results of the reaction of nucleophilic reagents such as amines and alcohols with the zwitterionic adduct to investigate about the decrosslinking through the resolution of ionic interactions. In the model reactions of amines and alcohols with the zwitterion compounds, which were consisted of the phenyl isothiocyanate and cyclic amidines, the reaction of nucleophilic reagents and zwitterionic adducts having methyl group at the 2‐position of the amidine proceed quantitatively. Based on the model reaction, such nucleophilic addition was applicable to decrosslinking reaction of the networked polymers containing the zwitterion structure in the side‐chain. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2131–2137  相似文献   

18.
Radical ring‐opening polyaddition of bifunctional vinyloxirane with multifunctional thiols was investigated. The polyaddition proceeded smoothly via the ring‐opening reaction of the oxirane moiety to afford the corresponding networked polymers bearing vinyl ether and sulfide moieties in the main chain. The thermal properties of the networked polymers and volume changes upon the polyaddition were investigated. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 783–788  相似文献   

19.
Poly(cyanurate)s (P‐1–P‐4) containing triazine groups in the main chain and pendant chloromethyl groups in the side chain were synthesized by the polyaddition of bis(epoxide)s with 2,4‐dichloro‐6‐(diphenylamino)‐s‐triazine (DPAT) using quaternary onium salts as catalysts. The polyaddition of diglycidyl ether of bisphenol‐A (DGEBA) with DPAT proceeded smoothly in chlorobenzene at 100 °C for 12 h to give P‐1 with Mn = 19,000 in a 92% yield, when tetrabutylammonium chloride (TBAC) was used as a catalyst. However, no reaction occurred without a catalyst or with triethylamine alone under the same reaction conditions. Polyadditions of other bis(epoxide)s with DPTA also proceeded smoothly using 5 mol % of TBAC as a catalyst in chlorobenzene to produce corresponding polymers (P‐2≈P‐4) in high yields under similar reaction conditions. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4006–4012, 2000  相似文献   

20.
Kumada‐Tamao coupling polymerization of 1,4‐dialkoxy‐2‐bromo‐5‐(2‐chloromagnesiovinyl)benzene ( 1 ) and 1,4‐dialkoxy‐2‐(2‐bromovinyl)‐5‐chloromagnesiobenzene ( 2 ) with a Ni catalyst and Suzuki‐Miyaura coupling polymerization of 2‐{2‐[(2,5‐dialkoxy‐4‐iodophenyl)]vinyl}‐4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolane ( 3 ), its bromo counterpart 4 , and 2,5‐dialkoxy‐4‐(2‐bromovinyl)phenylboronic acid ( 5 ) with a Pd initiator were investigated under catalyst‐transfer condensation polymerization conditions for the synthesis of well‐defined poly(p‐phenylenevinylene) (PPV). The Kumada‐Tamao polymerization of vinyl Grignard‐type monomer 1 with Ni(dppp)Cl2 at room temperature did not proceed, whereas aryl Grignard‐type monomer 2 afforded oligomers of low molecular weight. Matrix‐assisted laser desorption ionization time‐of‐flight (MALDI‐TOF) mass spectra of the polymer obtained from 2 implied that the Grignard end group reacted with tetrahydrofuran to terminate polymerization. On the other hand, Suzuki‐Miyaura polymerization of vinyl boronic acid ester type monomers 3 and 4 and phenylboronic acid type monomer 5 with a Pd initiator and aqueous KOH at ?20 °C to room temperature yielded the corresponding PPV with high molecular weight within a few minutes. However, the molecular weight distribution was broad, and MALDI‐TOF mass spectra showed the peaks of polymers bearing no initiator unit at the chain end, as well as those of polymers with the initiator unit. These results indicated that intermolecular chain transfer of the Pd catalyst occurred. Dehalogenation and disproportionation of the growing end also took place as side reactions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2643‐2653  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号