首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Highly conductive poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films as transparent electrodes for organic light‐emitting diodes (OLEDs) are doped with a new solvent 1,3‐dimethyl‐2‐imidazolidinone (DMI) and are optimized using solvent post‐treatment. The DMI doped PEDOT:PSS films show significantly enhanced conductivities up to 812.1 S cm−1. The sheet resistance of the PEDOT:PSS films doped with DMI is further reduced by various solvent post‐treatment. The effect of solvent post‐treatment on DMI doped PEDOT:PSS films is investigated and is shown to reduce insulating PSS in the conductive films. The solvent posttreated PEDOT:PSS films are successfully employed as transparent electrodes in white OLEDs. It is shown that the efficiency of OLEDs with the optimized DMI doped PEDOT:PSS films is higher than that of reference OLEDs doped with a conventional solvent (ethylene glycol). The results present that the optimized PEDOT:PSS films with the new solvent of DMI can be a promising transparent electrode for low‐cost, efficient ITO‐free white OLEDs.

  相似文献   


2.
A novel strategy via paper as an effective substrate has been introduced as a thermoelectric material in this work. Free‐standing poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/paper composite films are conveniently prepared by a one‐step method of directly writing PEDOT:PSS solution on paper, making the process simple, rapid, and facile. The free‐standing composite films display excellent flexibility, light weight, soaking stability in water, and great potential in large‐scale production. Improved thermoelectric properties are obtained in PEDOT:PSS/paper composite films, owing to the simultaneously enhanced Seebeck coefficient (30.6 μV K?1) and electrical conductivity, and a low thermal conductivity (0.16 W m?1 K?1) compared with pristine PEDOT:PSS films. The results indicate that paper as an effective substrate is suitable for the preparation of high‐performance and flexible thermoelectric materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 737–742  相似文献   

3.
Poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is the most popular anode buffer coated on indium tin oxide. It is thought to improve the inorganic–organic contact, but little is known about its role in organic–organic contact. This study addresses the latter issue by examining how the PEDOT:PSS layer affects the crystallization process of the neighboring layer composed of p‐type organic semiconductors in an organic photovoltaic device. Low landing voltage scanning electron microscopic analysis of crystals and aggregates of two donor compounds, tetrabenzoporphyrin (BP) and poly(3‐hexylthiophene) (P3HT), showed that PEDOT:PSS effectively nucleates the crystallization or aggregation of the donor material on its surface to form a uniformly thick film of polycrystalline BP or aggregated P3HT molecules. By contrast, a graphitic surface cannot induce structural order of the donor molecules on it. This result implies that pinning of the donor molecules to the acidic PEDOT:PSS surface promotes the heterogeneous nucleation at the organic–organic interface. © 2014 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 833–841  相似文献   

4.
We demonstrated a simple patterning method for the deposition of polymer electrodes such as poly(3,4‐ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS). We made use of the difference in wettability between hydrophobic surfaces and hydrophilic surfaces to make the patterns. However, the patterns made with our patterning method created undesirable ring‐like stains, which were caused by the outward flow of the solute within the PEDOT/PSS solution drop. To achieve homogenous device performance, we proposed a simple process for removing this ring‐like stain by making the surface tension gradient with dual solvent system in the PEDOT/PSS solution drop. Because this surface tension gradient causes the inward flow of the solute within the PEDOT/PSS solution drop, the ring‐like stain is removed. Finally, we confirmed the potential of our patterning method for polymer electrodes such as the PEDOT/PSS by fabricating pentacene thin‐film transistors (TFTs) and measuring the electrical properties of the pentacene TFTs. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1590–1596, 2011  相似文献   

5.
Poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) has been reported as a successful functional material in a broad variety of applications. One of the most important advantages of PEDOT:PSS is its water‐solubility, which enables simple and environmental friendly manufacturing processes. Unfortunately, this also implies that pristine PEDOT:PSS films are unsuitable for applications in aqueous environments. To reach stability in polar solvents, (3‐glycidyloxypropyl)trimethoxysilane (GOPS) is typically used to cross‐link PEDOT:PSS. Although this strategy is widely used, its mechanism and effect on PEDOT:PSS performance have not been articulated yet. Here, we present a broad study that provides a better understanding of the effect of GOPS on the electrical and electronic properties of PEDOT:PSS. We show that the GOPS reacts with the sulfonic acid group of the excess PSS, causing a change in the PEDOT:PSS film morphology, while the oxidation level of PEDOT remains unaffected. This is at the origin of the observed conductivity changes. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 814–820  相似文献   

6.
Conductive polymer (poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate) (PEDOT:PSS) is an attractive platform for the design of flexible electronic, optoelectronic, and (bio)sensor devices. Practical application of PEDOT:PSS often requires an incorporation of specific molecules or moieties for tailoring of its physical–chemical properties. In this article, a method for covalent modification of PEDOT:PSS using arenediazonium tosylates was proposed. The procedure includes two steps: chemisorption of diazo‐cations on the PEDOT:PSS surface followed by thermal decomposition of the diazonium salt and the covalent bond formation. Structural and surface properties of the samples were evaluated by XPS, SEM‐EDX, AFM, goniometry, and a range of electric and optical measurements. The developed modification procedure enables tuning of the PEDOT:PSS surface properties such as conductivity and optical absorption. The possibility to introduce various organic functional groups (from hydrophilic to hydrophobic) and to create new groups for further functionalization makes the developed procedure multipurpose. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 378–387  相似文献   

7.
The electrical and structural properties of poly(3,4‐ethylenedioxythiophene):poly(4‐styrenesulfonate) (PEDOT:PSS) thin films deposited from aqueous dispersion using different concentrations of selected secondary dopants are studied in detail. An improvement of the electrical conductivity by three orders of magnitude is achieved for dimethyl sulfoxide, sorbitol, ethylene glycol, and N,N‐dimethylformamide, and the secondary dopant concentration dependence of the conductivity exhibits almost identical behavior for all investigated secondary dopants. Detailed analysis of the surface morphology and Raman spectra reveals no presence of the secondary dopant in fabricated films, and thus the dopants are truly causing the secondary doping effect. Although the ratio of benzenoid and quinoid vibrations in Raman spectra is unaffected by doping, the phase transition in PEDOT:PSS films owing to doping is confirmed. Further analysis of temperature‐dependent conductivity reveals 1D variable range hopping (VRH) charge transport for undoped PEDOT:PSS, whereas highly conductive doped PEDOT:PSS films exhibit 3D VRH charge transport. We demonstrate that the charge ‐ hopping dimensionality change should be a fundamental reason for the conductivity enhancement. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1139–1146  相似文献   

8.
A novel conjugated poly[(fluorene‐2,7‐vinylene)‐alt‐(1,4‐phenylenevinylene)] derivative 2 with quaternizable tertiary amino groups was synthesized by Heck coupling of a substituted 2,7‐dibromofluorene and 1,4‐dialkoxy‐2,5‐divinylbenzene. The corresponding quaternary ammonium cationic polyelectrolyte 3 was obtained by the treatment of 2 with bromoethane. Both polymers were soluble in common organic solvents, like tetrahydrofuran, chloroform, and dichloromethane. Polymer 3 showed a limited solubility in alcohols and was insoluble in water. Photophysical and electrochemical properties of the resulting polymers were fully investigated. An intensive green photoluminescence (PL) with maxima at 550 and 545 nm was observed from thin films of 2 and 3 polymers, respectively, red‐shifted compared with the PL emission spectra measured in the solution. The electrochemical band gaps were 2.38–2.45 eV. Single‐layer and double‐layer (with poly[3,4‐(ethylenedioxy)thiophene]/poly (styrenesulfonate) (PEDOT:PSS)) light‐emitting devices (LEDs) with ITO and Al electrodes were prepared and studied. They emitted a green light and their electroluminescence (EL) spectra were similar to those of PL thin films. The external EL efficiency was determined to be 0.43 and 0.32% for ITO/PEDOT:PSS/ 2 /Al and ITO/PEDOT:PSS/ 3 /Al LEDs, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1016–1027, 2007  相似文献   

9.
We have investigated the electrical transport properties of poly(3,4‐ethylenedioxythiophen)/poly(4‐styrene‐sulfonate) (PEDOT:PSS) with PEDOT‐to‐PSS ratios from 1:1 to 1:30. By combining impedance spectroscopy with thermoelectric measurements, we are able to independently determine the variation of electrical conductivity and charge carrier density with PSS content. We find the charge carrier density to be independent of the PSS content. Using a generalized effective media theory, we show that the electrical conductivity in PEDOT:PSS can be understood as percolation between sites of highly conducting PEDOT:PSS complexes with a conductivity of 2.3 (Ωcm)?1 in a matrix of excess PSS with a low conductivity of 10?3 (Ω cm)?1. In addition to the transport properties, the thermoelectric power factors and Seebeck coefficients have been determined. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

10.
Summary: Due to its capability of dispensing very small volumes of different liquids in a controlled manner, ink‐jet printing is well suited for combinatorial experiments. The multi‐nozzle ink‐jet delivery system is especially advantageous for parallel chemical synthesis of different materials. We have used ink‐jet printing of an oxidizing agent to pattern a pre‐coated conducting polymer, poly(3,4‐ethylenedioxy)‐thiophene‐poly(styrene sulfonate) (PEDOT‐PSS), yielding electrodes with predefined shapes and a controlled degree of sheet resistivity for use in gray‐scale organic light‐emitting devices (OLEDs). The electrical and optical properties of the PEDOT‐PSS layer are modified via chemical interaction using the oxidizing agent. These experiments were performed using a desktop ink‐jet printer in conjunction with common graphic software which employed color functions such as CMY (cyan, magenta and yellow), HSL (hue, saturation and luminosity) and RGB (red, green and blue).

Photographs of gray‐scale OLEDs patterned on PEDOT‐PSS surfaces by an ink‐jet printer on plastic substrates.  相似文献   


11.
Poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been studied for a wide range of applications due to its potential as a transparent electrode. Herein, the use of imidazole and its derivatives as a neutralizing additive for PEDOT:PSS dispersion and in‐depth studies of their effects in terms of electrical properties and stability is reported. Although the neutralization in general reduces the electrical conductivity of PEDOT:PSS, the conductivity after imidazole treatment (685.2 S cm?1) is higher than that after treatment of other derivatives. Spectroscopic and thermoelectric studies show that the de‐doping effect resulted in the conductivity reduction. As a trade‐off of the conductivity reduction, greatly enhanced long‐term stability and noncorrosive characteristics are obtained after neutralization. The change in sheet resistance of imidazole‐treated PEDOT:PSS after 500 h under harsh conditions (85 °C and 85% humidity) is half that of the untreated samples, demonstrating the great enhancement of the stability. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1530–1536  相似文献   

12.
Electrochromic devices are fabricated by using polyaniline (PANI) doped with poly(styrene sulfonic acid) (PSS) as coloring electrodes, poly(ethylenedioxythiophene)‐poly(styrene sulfonic acid) (PEDOT‐PSS) as complementary electrodes, and hybrid polymer electrolytes as gel electrolytes. The device based on LiClO4‐based electrolyte (weight ratio of PMMA:PC:LiClO4 = 0.7:1.1:0.3) shows the highest optical contrast and coloration efficiency (333 cm2/C) after 1200 cycles in these devices, and the color changes from pale yellow (?0.5 V) to dark blue (+2.5 V). The spectroelectrochemical and electrochromic switching properties of electrochromic devices are investigated, the maximum optical contrast (ΔT%) of electrochromic device for ITO|PANI‐PSS‖PMMA‐PC‐LiClO4‐SiO2‖PEDOT‐PSS|ITO are 31.5% at 640 nm, and electrochromic device based on LiClO4‐based electrolyte with SiO2 shows faster response time than that based on LiClO4‐based electrolyte without SiO2.  相似文献   

13.
Two‐dimensional (2D) WS2 nanosheets (NSs) as a promising thermoelectric (TE) material have gained great concern recently. The low electrical conductivity significantly limits its further development. Herein, we reported an effective method to enhance the TE performance of WS2 NSs by combining poly(3,4‐ethylenedioxythiophene):poly(4‐styrenesulfonate) (PEDOT:PSS). The restacked WS2 NSs thin film with 1T phase structure obtained by a common chemical lithium intercalation show a high Seebeck coefficient of 98 μV K?1 and a poor electrical conductivity of 12.5 S cm?1. The introduction of PEDOT:PSS with different contents obviously improve the electrical conductivity of WS2 NSs thin films. Although a declining Seebeck coefficient was observed, an optimized TE power factor of 45.2 μW m?1 k?1 was achieved for WS2/PEDOT:PSS composite thin film. Moreover, the as‐prepared WS2/PEDOT:PSS thin film can be easily peeled off and transferred to other substrate leading to a more promising application. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 997–1004  相似文献   

14.
Water‐soluble electrically conductive polymer poly(3,4‐ethylenedioxythiophene) (PEDOT) was synthesized by the enzymatic‐catalyzed method using 3,4‐ethylenedioxythiophene (EDOT) as monomer, poly(styrenesulfonate) (PSS) as water‐soluble polyelectrolyte, horseradish peroxidase enzyme as catalyst, and hydrogen peroxide (H2O2) as oxidant. Fourier transform infrared spectra and UV–vis absorption spectra confirm the successful enzymatic‐catalyzed polymerization of PEDOT. Dynamic light scattering data confirm the formation of a stable PEDOT:PSS aqueous dispersion. The thermo gravimetric data show that the obtained PEDOT is stable over a fairly high range of temperatures. The atomic force microscopy height images show that the PEDOT:PSS aqueous dispersion can form excellent homogeneous and smooth films on various substrates by conventional solution processing techniques, which renders this PEDOT:PSS aqueous dispersion a very promising candidate for various application in electronic devices. This enzymatic polymerization is a new approach for the synthesis of optical and electrical active PEDOT polymer, which benefits simple setting, high yields, and environmental friendly route. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
In this review, PEDOT–PSS is mainly a commercially available PEDOT–PSS, which is a water‐dispersible form of the intrinsically conducting PEDOT doped with the water‐soluble PSS, including its derivatives, copolymers, analogs (PEDOT:PSSs), even their composites via the chemical or physical modification toward the structure of PEDOT and/or PSS. First, we will focus on discussing the scientific importance of PEDOT–PSS in conjunction with its extraordinary properties and broad multidisciplinary applications in organic/polymeric electronics and optoelectronics from the viewpoint of the historical development and the promising application of representative ECPs. Subsequently, versatile film‐forming techniques for the preparation of PEDOT–PSS film electrode were described in details, including common coating approaches and printing techniques, and many emerging preparative methods were mentioned. Then challenges (e.g., conductivity, stability in Water, adhesion to substrate electrode) of PEDOT–PSS film electrode for devices under the high humidity/watery circumstances, especially electrochemical devices are discussed. Fourth, we take PEDOT–PSS film electrode for a relatively new application in sensors as an example, mainly summarized advances in the development of various sensors based on PEDOT–PSSs and their composites in combination with its preparative methods and extraordinary properties. Finally, we give the outlook of PEDOT–PSS for possible applications with the emphasis on PEDOT–PSS film electrode for electrochemical devices, including sensors. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 55, 1121–1150  相似文献   

16.
This study investigates the resistive behavior of rod‐coated micrometer thick films of poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) on ultra‐low modulus (120– 130 kPa) polydimethylsiloxane (PDMS) substrate having scratch or microtrench‐type roughness patterns. On average, the films were found to remain electrically functional up to 23% axial strain with an average increase of three times in the value of the normalized resistance. The films were also found to remain conductive up to bending diameter of 4 mm with an average increase of 1.12 times their initial resistance. The rod‐coated PEDOT:PSS films on ultra‐low modulus PDMS having microtrench‐type roughness were also found to remain functional even after 1000 bending cycles at a bending diameter of 4 mm and even smaller with an increase in resistance that was on average 1.15 times their initial resistance. The films were found to fail firstly by cracking and thereby debonding from the substrate under the application of axial strain. On the other hand, the films exhibit no delamination under bending strains. The results from this investigation suggest that the polymer–polymer laminate has potential applicability in stretchable and flexible electronics and related applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 226–233  相似文献   

17.
Recent measurements in poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films show that capacitance scales with film volume. We discuss the ramifications of this finding and propose a simple model that describes capacitance in terms of sites in which ions injected from the electrolyte replace holes that are extracted from the film by a metal contact. We propose that volumetric capacitance is inversely proportional to the average distance between these sites. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1433–1436  相似文献   

18.
Thick, uniform, easily processed, highly conductive polymer films are desirable as electrodes for solar cells as well as polymer capacitors. Here, a novel scalable strategy is developed to prepare highly conductive thick poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (HCT‐PEDOT:PSS) films with layered structure that display a conductivity of 1400 S cm?1 and a low sheet resistance of 0.59 ohm sq?1. Organic solar cells with laminated HCT‐PEDOT:PSS exhibit a performance comparable to the reference devices with vacuum‐deposited Ag top electrodes. More importantly, the HCT‐PEDOT:PSS film delivers a specific capacitance of 120 F g?1 at a current density of 0.4 A g?1. All‐solid‐state flexible symmetric supercapacitors with the HCT‐PEDOT:PSS films display a high volumetric energy density of 6.80 mWh cm?3 at a power density of 100 mW cm?3 and 3.15 mWh cm?3 at a very high power density of 16160 mW cm?3 that outperforms previous reported solid‐state supercapacitors based on PEDOT materials.  相似文献   

19.
The aim of this work has been to study the influence of modified hole‐extraction layers on the performance of organic solar cells (OSCs) based on blends of poly (3‐hexylthiophene) and [6,6]‐phenyl‐C61‐butyric acid methyl ester. The hole‐extraction layers consist of poly (3,4‐ethylene dioxythiophene):polystyrene sulfonic acid (PEDOT:PSS) doped with different concentrations of bromine. Compared with pristine OSC without adding bromine to the hole‐extraction layer, the bromine‐doped OSCs show a 49% increase in the power conversion efficiency (from 2.12 to 3.16%), which could be attributed to the increase of electrical and optical properties of PEDOT:PSS films after the addition of bromine. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 125–128, 2012  相似文献   

20.
Poly(3,4‐ethylenedioxythiophene) (PEDOT) and its derivatives are relatively new, and unique members of conducting‐polymers family. In this article, we present an approach for simple, reliable and cost‐efficient electrochemical biosensor for real‐time detection and quantification of phenolic compounds (PhCs). The PEDOT:poly(styrene sulfonate) (PSS) polymer, directly screen‐printed on the surface of the working electrode, was shown to act as an effective electrical conductor but also as an efficient redox mediator. It has also been found suitable for the reduction of quinone ions at low reducing potentials, close to 0 V versus Ag/AgCl, thus minimizing interferences due to other electroactive species present in real samples. Based on these properties, a biosensor based on tyrosinase immobilized on PEDOT:PSS‐modified electrodes was developed allowing the detection of PhCs in surface waters. The biosensor displayed very good performance in terms of sensitivity, detection limit and linear range. Assays using surface water previously spiked with bisphenol A showed that the biosensor was able to detect PhCs in real conditions with no matrix effect. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号