首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 183 毫秒
1.
Transparent inorganic‐polymer nanocomposite films are of tremendous current interest inemerging solar coverings including photovoltaic encapsulants and commercial greenhouse plastics, but suffer from significant radiative heat loss. This work provides a new and simple approach for controlling this heat loss by using mesoporous silica/quantum dot nanoparticles in poly(ethylene‐co‐vinyl acetate) (EVA) films. Mesoporous silica shells were grown on CdS‐ZnS quantum dot (QDs) cores using a reverse microemulsion technique, controlling the shell thickness. These mesoporous silica nanoparticles (MSNs) were then melt‐mixed with EVA pellets using a mini twin‐screw extruder and pressed into thin films of concentration variable controlled thickness. The results demonstrate that the experimental MSNs showed improved infrared and thermal wavebands retention in the EVA transparent films compared to commercial silica additives, even at lower concentrations. It was also found MSNs enhanced the quantum yield and photostability of the QDs, providing high visible light transmission and blocking of UV transmission of interest for next generation solar coatings. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 851–859  相似文献   

2.
New poly(ethylene oxide)‐based block copolymers (ssBCs) with a random copolymer block consisting of a reduction‐responsive disulfide‐labeled methacrylate (HMssEt) and a thermoresponsive di(ethylene glycol)‐containing methacrylate (MEO2MA) units were synthesized. The ratio of HMssEt/MEO2MA units in the random P(MEO2MA‐co‐HMssEt) copolymer block enables the characteristics of well‐defined ssBCs to be amphiphilic or thermoresponsive and double hydrophilic. Their amphiphilicity or temperature‐induced self‐assembly results in nanoaggregates with hydrophobic cores having different densities of pendant disulfide linkages. The effect of disulfide crosslinking density on morphological variation of disulfide‐crosslinked nanogels is investigated. In response to reductive reactions, the partial cleavage of pendant disulfide linkages in the hydrophobic cores converts the physically associated aggregates to disulfide‐crosslinked nanogels. The occurrence of in‐situ disulfide crosslinks provides colloidal stability upon dilution. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2057–2067  相似文献   

3.
Three series of semiflexible and rigid main‐chain polyesters containing photoreactive mesogenic units derived from p‐phenylenediacrylic acid (PDA) and cinnamic acid have been synthesized by high‐temperature polycondensation. The thermal and mesomorphic properties of the polymers have been determined. The photochemical behavior of polymer P‐[1]‐T, which contains a PDA unit, has been studied both in solution and in films. In solution, [2+2] photocycloaddition, E/Z photoisomerization, and photo‐Fries rearrangement can take place. In contrast, the dominant process in spin‐coated films is the [2+2] photocycloaddition reaction, which causes crosslinking of the polymer. In films, the photochemistry and induction of anisotropy are strongly influenced by the aggregation of the PDA phenylester unit. A dichroism of about 0.2 has been induced in films by irradiation with linearly polarized UV light, and thus the capability of these films to induce optical anisotropy and align liquid crystals has been demonstrated. Liquid‐crystalline cells have been made with polarized irradiated films of P‐[1]‐T as aligning layers. A commercial liquid‐crystalline mixture has been used for this study, and a similar liquid‐crystalline order determined by polarized Fourier transform infrared to a commercial cell with rubbed polyimide as an aligning layer has been detected. Because of crosslinking of the irradiated P‐[1]‐T photoaligning layer, the photoinduced anisotropy is stable at high temperatures, and the liquid‐crystalline molecules are insoluble in the irradiated polymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4907–4921, 2005  相似文献   

4.
In this work, a self‐healing strategy for poly(propylene oxide)s bearing coumarine‐benzoxazine units (PPO‐CouBenz)s based on light induced coumarine dimerization reactions is described. Four different types of poly(propylene oxide) amines with molecular weights ranging from 440 to 5000 Da were reacted with formaldehyde and 4‐methyl‐7‐hydroxycoumarin to yield desired (PPO‐CouBenz)s. The crosslinked polymer films were prepared by solvent casting of various compositions of PPO‐CouBenzs in chloroform followed by thermal ring opening reaction of benzoxazine groups at 210–240 °C. Thermal curing and thermal stability of the initial PPOs and final products were investigated. Using allyl benzoxazine in the formulation, it was demonstrated that the toughness of the films was improved. Photoinduced healing of coumarin‐based cured PPO‐CouBenz polymer films was investigated. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2911–2918  相似文献   

5.
Conductive composite films of poly(styrene‐con‐butylacrylate) copolymers filled with low‐density, Ni‐plated core‐shell polymeric particles were prepared and their behaviors of positive temperature coefficient of resistance (PTCR) were investigated. When the conductive fillers in the composite film were loaded beyond the critical volume, 10 up to 25 vol %, composite films exhibited a unique electrical resistant transition behavior, which the electrical resistance rapidly increased by several orders of magnitude at the critical temperature. The PTCR transition temperature, in general, occurred before the glass transition temperature of polymer matrix. Further increased the conductive filler loading to 30 vol %, the overpacked conduction paths were formed in the entire composite and the PTCR effects became blurred. While the composite film treated with thermal cycle several times from room temperature up to 120 °C, the electrical resistivity increased accompanied with the shift of the PTCR transition to lower temperature. The reason might have been caused by the formed interfacial cracks within the composite film. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 322–329, 2007  相似文献   

6.
A bis(ether amine) containing the ortho‐substituted phenylene unit and pendant tert‐butyl group, 1,2‐bis(4‐aminophenoxy)‐4‐tert‐butylbenzene, was synthesized and used as a monomer to prepare polyimides with six commercial dianhydrides via a conventional two‐stage procedure. The intermediate poly(amic acid)s had inherent viscosities of 0.78–1.44 dL/g, and most of them could be thermally converted into transparent, flexible, and tough polyimide films. The inherent viscosities of the resulting polyimides were in the range of 0.46–0.87 dL/g. All polyimides were noncrystalline, and most of them showed excellent solubility in polar organic solvents. The glass‐transition temperatures of these polyimides were in the range of 222–259 °C in differential scanning calorimetry and 212–282 °C in thermomechanicl analysis. These polyimides showed no appreciable decomposition up to 500 °C in thermogravimetric analysis in air or nitrogen. A comparative study of the properties with the corresponding polyimides without pendant tert‐butyl groups derived from 1,2‐bis(4‐aminophenoxy)benzene is also presented. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1551–1559, 2000  相似文献   

7.
Novel liquid‐crystalline alternating conjugated copolymers [ P(P(6)CN‐alt‐Cz) and P(P(6)CN‐alt‐MeP) ] with phenylene and carbazolylene or phenylene with methyl substitution onto the main chain have been synthesized through palladium‐catalyzed Suzuki coupling reactions. The influence of the incorporation of carbazolylene and the substituted phenylene into the main chain on the thermal, mesomorphic, and luminescent properties has been investigated by Fourier transform infrared spectroscopy, thermogravimetry, differential scanning calorimetry, polarized optical microscopy, ultraviolet–visible spectroscopy, photoluminescence (PL), and cyclic voltammetry. These polymers show highly thermal stability, losing little of their weights when heated to 360 °C. The conjugated copolymers exhibit liquid crystallinity at elevated temperature. The existence of the chromophoric terphenyl core endows the copolymers with high PL and the polymer P(P(6)CN‐alt‐Cz containing carbazolylene unit can emit more pure blue light. All the copolymer films with low band gaps about 2.3–2.4 eV undergo reversible oxidation and reduction processes, significantly lower than the band gap of poly(p‐phenylene). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 434–442, 2010  相似文献   

8.
Two series of novel random polyfluorene copolymers containing quinoxaline units were prepared by stressing the coupling according to Yamamoto. The first series contains 2,3‐bis‐(4′‐tert‐butyl‐biphenyl‐4‐yl)benzo[g]quinoxaline and the second series 2,3‐bis‐(4′‐tert‐butyl‐biphenyl‐4‐yl)quinoxaline as energy accepting unit. The copolymers were identified by gel permeation chromatography, infrared spectroscopy, and nuclear magnetic resonance spectroscopy. Thermal properties were analyzed by thermal gravimetric analysis and differential scanning calorimetry revealing amorphous copolymers that are stable up to 430 °C. The morphology was investigated using atomic force microscopy. The optical properties in solutions and thin films were analyzed. Furthermore, the thin film electro‐optical properties were determined in monolayer polymer light‐emitting devices. Single layer devices were built with efficiencies ranging from 0.15 to 2.0 cd/A. For the random copolymers with 5 mol % benzo[g]quinoxazoline in the polyfluorene backbone some threefold efficiency enhancement from 1.1 to 3.0 cd/A was achieved by utilizing an ultra thin interlayer of poly(9,9‐di‐n‐octylfluorene‐2,7‐diyl)‐alt‐[1,4‐phenylene‐(4‐sec‐butylphenylimino)‐1,4‐phenylene] between PEDOT:PSS and the emissive random copolymer layer. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4773–4785, 2007  相似文献   

9.
Hyperstar polymers (HSPs) with hyperbranched aromatic polyester core and arms consisting of block copolymers of poly(methyl methacrylate) and poly(hydroxyethyl methacrylate) have been used as polymeric modifiers in cycloaliphatic epoxy‐anhydride formulations catalyzed with tertiary amines, with the purpose of enhancing the impact strength of the resulting materials without compromising other thermal and mechanical properties.> In this work, the effect of these polymeric modifiers on the curing kinetics, processing, thermal‐mechanical properties and thermal stability has been studied using thermal analysis techniques such as DSC, TMA, DMA, and TGA. The morphology of the cured materials has been analyzed with SEM. The curing kinetics has been analyzed by isoconversional procedures and phenomenological kinetic models taking into account the vitrification during curing, and the degradation kinetics has been analyzed by means of isoconversional procedures, summarizing the results in a time‐temperature‐transformation (TTT) diagram. The results show that HSPs participate in the crosslinking process due to the presence of reactive groups, without compromising significantly their thermal‐mechanical properties. The modified materials show a potential toughness enhancement produced by the formation of a nano‐grained morphology. The TTT diagram is shown to be a useful tool for the optimization of the curing schedule in terms of curing completion and safe processing window, as well as for defining storage stability conditions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1227–1242  相似文献   

10.
The formation of monodisperse, crosslinked, thermally inscribed core‐shell microspheres by free radical precipitation copolymerization of chloromethylstyrene and divinylbenzene in acetonitrile is reported. The radial density profiles of these microspheres match the thermal profiles used during copolymerization: stepping down the polymerization temperature from 75 °C to 65 °C several hours into the copolymerization led to core‐shell microspheres with porous cores and denser shells, while stepping up the polymerization temperature from 68 °C to 78 °C during the polymerization led to formation of microspheres with denser cores and more swellable shells. Microsphere size distributions and internal morphologies were studied using optical and transmission electron microscopy. The change in network swellability with temperature was compared with model studies of aggregation of corresponding nanogels, both in acetonitrile and in related solvent systems, as a function of temperature, indicating the theta‐temperature for this copolymer/solvent system to be around 30 °C. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1159–1166  相似文献   

11.
High‐refractive‐index aminoalkoxysilane‐capped pyromellitic dianhydride (PMDA)–titania hybrid optical thin films (TP0–TP8) were synthesized and characterized in this study. They were prepared with PMDA, aminopropyltrimethoxysilane, and titanium(IV) isopropoxide via a sol–gel process followed by spin coating and multistep baking. Through adjustments in the concentration and reaction time, the inorganic content in the hybrid thin films could be as high as 59.1 wt %. The Fourier transform infrared results indicated successful bonding between the organic and inorganic moieties. However, residues of the chelating ligands were found in the hybrids with high titania contents, affecting their thermal and optical properties. Field emission scanning electron microscopy results suggested a nanosized domain of the titania segment in the hybrid materials TP0–TP8. An atomic force microscopy study suggested that the hybrid thin films had good planarization. The dispersions of the refractive index and extinction coefficient in the wavelength range 190–900 nm were studied. The refractive indices of the prepared hybrid thin films at 633 nm increased linearly from 1.567 to 1.780 with increasing titania content. However, the Abbe numbers of the hybrid thin films showed an opposite trend. Excellent optical transparence was obtained in the visible region for the prepared hybrid thin films. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3419–3427, 2001  相似文献   

12.
The layer‐by‐layer (LBL) assembly technique is an attractive method to make functional multilayer thin films and has been applied to fabricate a wide range of materials. LBL materials could improve optical transmittance and mechanical properties if the film components were covalently bonded. Covalently bonded nanocomposite multilayer films were prepared by employing hydrophilic aliphatic polyisocyanate (HAPI) as the reactive component, to react with Laponite and polyvinyl alcohol (PVA). FT‐IR spectra suggested that HAPI reacted with Laponite and PVA at ambient temperature rapidly. Ellipsometry measurement showed that the film thickness was in linear growth. The influences of HAPI on the optical, mechanical and thermal properties of the films were investigated by UV‐Vis spectroscopy, tensile stress measurement, DSC and TGA. The obtained results showed that the optical transmittance and mechanical strength were enhanced when the film components were covalently bonded by HAPI. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 545–551  相似文献   

13.
A series of all‐conjugated diblock and triblock copolymers comprised of poly(naphthalene diimide) (PNDI)‐based n‐type and the poly(3‐hexylthiophene) (P3HT) segments could be synthesized via the Kumada catalyst‐transfer polycondensation process. The crystalline structures and chain orientation of the block copolymer thin films were systematically studied by grazing incident wide‐angle X‐ray scattering (GIWAXS). The GIWAXS results indicated that both the P3HT and PNDI segments in the block copolymers form exclusive crystalline domains in which the P3HT domain aligns with an edge‐on rich orientation, and the PNDI domain aligns with a face‐on rich orientation. In contrast, the blend films of the P3HT and PNDI homopolymers also show two distinguished crystalline domains in which the P3HT domain aligns with an edge‐on rich orientation, and the PNDI domains align in different ways depending on the chemical structure of n‐type polymers, that is, PNDI1Th is isotropically dispersed, while PNDI2Th aligns with a face‐on rich orientation. In addition, the effect of thermal annealing on the crystalline behavior of the block copolymers is reported. The GIWAXS results indicated that thermal annealing increases the crystallinity of both segments without affecting their chain orientation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1139–1148  相似文献   

14.
A new series of highly phenyl‐substituted polyfluorene derivatives were synthesized and characterized. The resulting polymers were amorphous and showed excellent solubility in common organic solvents, such as chloroform, tetrahydrofuran, xylene, toluene, chlorobenzene, and so forth. All possessed satisfied thermal stability with glass‐transition temperatures (Tg's) in the range of 79–115 °C. They emitted blue light with photoluminescent (PL) maximum peaks at about 408–412 nm in thin films. The PL efficiencies of the polymer films were measured around 30–33%. The highly phenylated pendants improved the Tg of polyfluorene without forming defects in the polymers and reduced their tendency to form aggregate/excimers. Polymer light‐emitting diodes were fabricated from these polymers with the configuration of indium tin oxide/polyethylenedioxythiophene:polystyrene sulfonic acid/polymer/Ba/Al, which emitted bright blue light with maximum peaks at 418–420 nm. The maximum external quantum efficiencies of these devices were 0.41–0.6%. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2985–2993, 2004  相似文献   

15.
Two photosensitive chiral liquid crystalline azobenzene‐containing polymethacrylates having different length of flexible spacer connecting chromophores with backbone were synthesized and their phase behavior and photo‐optical properties were studied. Both polymers consist of lateral methyl substituents in ortho‐position of azobenzene chromophores providing high photosensitivity even in red spectral region as well as high thermal stability of photoinduced Z‐form of azobenzene chromophores. It is shown, that smectic phase (SmA*) formation in films of polymer with longer spacer predetermines its quite unusual spectral response to UV and subsequent visible light actions. The SmA* phase promotes spontaneous homeotropic alignment of azobenzene chromophores in polymer films. UV‐irradiation induces not only E‐Z isomerization but also results in disruption of homeotropic alignment, whereas subsequent visible light action enables to obtain films with the low degree of chromophores orientation. The photo‐orientation phenomena under the action of polarized light of different wavelength on polymer films were studied. The possibility of using red polarized light of moderate intensity for optical photorecording on polymer films is demonstrated. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2962–2970  相似文献   

16.
The condensation polymerization of 4,4′‐oxydianiline with pyromellitic dianhydride for the formation of poly(amic acid) and the subsequent imidization for the formation of polyimides were investigated for films prepared with vapor‐deposition polymerization techniques. Fourier transform infrared spectroscopy, thermal analysis, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry of films at different temperatures indicated that additional solid‐state polymerization occurred before imidization. The experiments revealed that, upon vapor deposition, poly(amic acid) oligomers formed that had a number‐average molecular weight of about 1500 Da. Between 100–130 °C, these chains underwent an additional condensation reaction and formed slightly higher molecular weight oligomers. Calorimetry measurements showed that this reaction was exothermic [enthalpy of reaction (ΔH) ~ ?30 J/g] and had an activation energy of about 120 kJ/mol. The experimental ΔH values were compared with results from ab initio molecular modeling calculations to estimate the number of amide groups formed. At higher temperatures (150–300 °C), the imidization of amide linkages occurred as an endothermic reaction (ΔH ~ +120 J/g) with an activation energy of about 130 kJ/mol. The solid‐state kinetics depended on the reaction conversion as well as the processing conditions used to deposit the films. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5999–6010, 2004  相似文献   

17.
The dynamic heat capacity and glass‐transition temperature of polystyrene (PS)/poly(vinyl acetate‐co‐butyl acrylate) (VAc–BA) (50:50 w/w) structured latex films as a function of annealing time at 70, 77, and 85 °C were examined with modulated‐temperature differential scanning calorimetry. The PS and poly(vinyl acetate‐con‐butyl acrylate) components were considered to be the cores and shells, respectively, in the structured latex. The dynamic heat capacity decreased with time. The glass‐transition temperatures of the PS and VAc–BA phases shifted to higher values after annealing. The results of thermogravimetry showed that there existed about 1.8% residual water in the films. The mean free volume and relative concentration of holes at room temperature (before and after annealing) and 85 °C, as a function of time, were obtained with positron annihilation lifetime spectroscopy (PALS). The PALS results indicated no significant change in free volume during annealing. It is believed that the loss, by diffusion, of residual water mainly caused a decrease in heat capacity and an increase in the glass‐transition temperatures. As little as 1.8% residual water in the structured latex films had a significant influence on the thermal properties. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1659–1664, 2001  相似文献   

18.
Pyrrolyl‐capped poly(N‐isopropylacrylamide) macromonomers (Py‐PNIPAM) were prepared through reversible addition‐fragmentation‐transfer polymerization with benzyl 1‐pyrrolylcarbodithioate as chain‐transfer agent. Polymerizations of Py‐PNIPAM with/without pyrrole using AgNO3 as oxidizing agent and dimethylforamide as solvent resulted in graft copolymers of polypyrrole‐graft‐poly(N‐isopropylacrylamide) (PPy‐g‐PNIPAM) as well as silver nanoparticles, leading to the formation of PPy‐g‐PNIPAM/silver nanocomposites. The resulting nanocomposites were soluble in water when the content of PPy was low, and when the molar ratio of Py/Py‐PNIPAM increased to 30, the resulting products became insoluble in water. The resulting nanocomposites had special optical properties because of PPy as well as the temperature‐responsible PNIPAM. The chemical structure and composition of nanocomposite were characterized by 1H nuclear magnetic resonance spectroscopy, gel permeation chromatograms, fourier transform infrared spectroscopy, and X‐ray diffraction. Their optical properties were characterized by UV–vis and fluorescence spectroscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6950–6960, 2008  相似文献   

19.
The free‐radical copolymerization of N‐phenylmaleimide (N‐PhMI) with acrylic acid was studied in the range of 25–75 mol % in the feed. The interactions of these copolymers with Cu(II) and Co(II) ions were investigated as a function of the pH and copolymer composition by the use of the ultrafiltration technique. The maximum retention capacity of the copolymers for Co(II) and Cu(II) ions varied from 200 to 250 mg/g and from 210 to 300 mg/g, respectively. The copolymers and polymer–metal complexes of divalent transition‐metal ions were characterized by elemental analysis, Fourier transform infrared, 1H NMR spectroscopy, and cyclic voltammetry. The thermal behavior was investigated with differential scanning calorimetry (DSC) and thermogravimetry (TG). The TG and DSC measurements showed an increase in the glass‐transition temperature (Tg) and the thermal stability with an increase in the N‐PhMI concentration in the copolymers. Tg of poly(N‐PhMI‐co‐AA) with copolymer composition 46.5:53.5 mol % was found at 251 °C, and it decreased when the complexes of Co(II) and Cu(II) at pHs 3–7 were formed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4933–4941, 2005  相似文献   

20.
The morphology in mixed bulk‐heterojunction films are compared using three different quantitative measurement techniques. We compare the vertical composition changes using high‐angle annular dark‐field scanning transmission electron microscopy with electron tomography and neutron and x‐ray reflectometry. The three measurement techniques yield qualitatively comparable vertical concentration measurements. The presence of a metal cathode during thermal annealing is observed to alter the fullerene concentration throughout the thickness of the film for all measurements. However, the absolute vertical concentration of fullerene is quantitatively different for the three measurements. The origin of the quantitative measurement differences is discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1291–1300  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号