首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The time variation of the frictional force between two surfaces, undergoing stick-slip sliding across a molecularly thin film of a confined model liquid, was examined at high time and force resolution, showing clearly that dissipation of energy occurs both during the slip, and at the instant of stick (via transfer of residual momentum). Detailed analysis indicates that, in marked contrast to earlier suggestions, of order 90% or more of the dissipation occurs by viscous heating of the confined shear-melted film during the slip, and only a small fraction of the energy is dissipated at the instant of stick.  相似文献   

2.
Friction in contact interfaces of assembled structures is the prime source of nonlinearity and energy dissipation. Determination of the dissipated energy in an assembled structure requires accurate modeling of joint interfaces in stick, micro-slip and macro-slip states. The present paper proposes an analytical model to evaluate frictional energy loss in surface-to-surface contacts. The goal is to develop a continuous contact model capable of predicting the dynamics of friction interface and dissipation energy due to partial slips. To achieve this goal, the governing equations of a frictional contact interface are derived for two distinct contact states of stick and partial slip. A solution procedure to determine stick–slip transition under single-harmonic excitations is derived. The analytical model is verified using experimental vibration test responses performed on a free-frictionally supported beam under lateral loading. The theoretical and experimental responses are compared and the results show good agreements between the two sets of responses.  相似文献   

3.
An aluminum nanowire switches from superconducting to normal as the current is increased in an upsweep. The switching current (I(s)) averaged over upsweeps approximately follows the depairing critical current (I(c)) but falls below it. Fluctuations in I(s) exhibit three distinct regions of behaviors and are nonmonotonic in temperature: saturation well below the critical temperature T(c), an increase as T(2/3) at intermediate temperatures, and a rapid decrease close to T(c). Heat dissipation analysis indicates that a single phase slip is able to trigger switching at low and intermediate temperatures, whereby the T(2/3) dependence arises from the thermal activation of a phase slip, while saturation at low temperatures provides striking evidence that the phase slips by macroscopic quantum tunneling.  相似文献   

4.
丁凌云  龚中良  黄平 《物理学报》2009,58(12):8522-8528
以界面摩擦为研究对象,分析了黏滑过程中的能量积累和耗散问题.基于晶格热动力学理论,通过分析界面原子在周期性势场中跳跃前后的势能差,推导了界面原子温升公式.理论表明,界面温升与摩擦系统的接触状态和材料特性有关,界面交互势能是其中影响较大的因素之一.在滑动阶段初期,由于界面原子处于非热平衡状态,晶格的热振动将通过激发出新声子而耗散能量,从而使得非热平衡向平衡状态转变.通过引入量子力学和热力学理论,分析了界面摩擦能量的耗散规律.结果表明,当声子振动频率较大时,黏着阶段存储于界面振子上的弹性势能在滑动阶段就很快完全耗散,耗散时间远小于滑动阶段的时间. 关键词: 界面摩擦 黏滑 声子 温升  相似文献   

5.
We consider a simple approach of standard Ginzburg--Landau free-energy functional for a wire to study the properties of superconducting nanowires, and analyze the problem of quantum and thermally activated phase slips. In such systems one can consider a possibility for phase slips to be created not only due to thermal but also due to quantum fluctuations of a uperconducting order parameter. We obtain some expressions of the free energy, the entropy, the specific heat and the bias current, respectively. The bias current I is a function of the temperature and the length of superconducting nanowires, and has a quantum phase slip. We obtain the stochastic dynamics of superconductive-resistive switching in hysteretic current-biased superconducting nanowires undergoing phase-slip fluctuations, and obtain the distribution of switching currents. Our results can be verified in modern experiments with superconducting nanowires.  相似文献   

6.
张敏梁  田煜  蒋继乐  孟永钢  温诗铸 《物理学报》2009,58(12):8394-8399
被外电场极化而固化的电流变液容易在极板处产生剪切滑移而降低其力学性能.使用抛光、激光打坑、覆盖尼龙网和光刻腐蚀四种方法对极板形貌进行了修饰,并对电流变液的压缩力学性能进行了测试.研究表明,光滑极板和光刻腐蚀柱阵列极板易产生界面滑移而压缩强度较低,粗糙坑阵列和覆盖尼龙网可抑制界面滑移而压缩强度高.极板形貌增强极板附近局部电场强度,强化了链末端与极板间的作用,迫使链结构屈服位置远离链末端,从而有效抑制了滑移.研究结果对进一步认识电流变液的屈服强度,提高电流变器件的力学性能有重要参考价值. 关键词: 电流变液 滑移 极板形貌修饰 压缩应力  相似文献   

7.
We study the superfluid properties of (quasi) one-dimensional bosonic atom gases/liquids in traps with finite geometries in the presence of strong quantum fluctuations. Driving the condensate with a moving defect we find the nucleation rate for phase slips using instanton techniques. While phase slips are quenched in a ring resulting in a superfluid response, they proliferate in a tube geometry where we find Bloch oscillations in the chemical potential. These Bloch oscillations describe the individual tunneling of atoms through the defect and thus are a consequence of particle quantization.  相似文献   

8.
We consider quantum slips of phase at a round hole punctured in a thin superconducting film and show that virtual vortex pairs provide an efficient pathway for these processes. Specifically, in the limit when the normalstate resistivity of the film is large, the presence of the film causes at most a logarithmic interaction between phase slips. This is in contrast to the nearly linear confining interaction (and the consequent nearly activated behavior of the resistance) obtained when vortices are neglected. The text was submitted by the author in English. An erratum to this article is available at .  相似文献   

9.
A new concentration slip model to describe the rarefied gas effect on the species transport in microscale chemical reactors was derived from the approximate solution of the Boltzmann equation. The present model is more general and recovers the existing models in the limiting cases. The analytical results showed that the concentration slip is dominated by two different mechanisms, the reaction induced concentration slip (RIC) and the temperature slip induced concentration slip (TIC). The magnitude of RIC slip is proportional to the product of the Damköhler number and Knudsen number. The impact of the velocity, concentration and temperature slips on the coupling between the surface catalytic reactions and the homogeneous gas phase reactions was examined using the detailed chemistry of hydrogen and methane within a wide range of accommodation coefficients in a two-dimensional microscale chemical reactor. The results showed that the impact of reaction induced concentration slip (RIC) effects on catalytic reactions strongly depends on the Damköhler number, the Knudsen number and the surface accommodation coefficient. It was found that the TIC slip had a strong effect on the fuel oxidation rates and the RIC slip dramatically changed the mass fraction distributions of radicals, especially when the mass accommodation coefficients were far less than unity.  相似文献   

10.
11.
We investigate the situation where a mesoscopic 1D ring or 2D cylinder is subject to a magnetic field by simulating the time dependant Ginzburg–Landau equations with periodic boundary conditions. We investigate the different possible evolutions for the 1D phase slip phenomenon. The case of the multiple phase slips is analyzed in details and we study the competition between simultaneous and consecutive multiple phase slips analytically and numerically. In 2D we study the creation of vortex–antivortex pairs. Following the theory of the Kibble–Zurek mechanism, we quenched the sample by applying a strong current and observe vortex–antivortex pairs dynamics.  相似文献   

12.
A general model for phenomenological transport in phase transition is derived, which extends Jäckle and Frisch model of phase transition with memory and the Cahn–Hilliard model. In addition to including interfacial energy to account for the presence of interfaces, we introduce viscosity and relaxation contributions, which result from incorporating memory effect into the driving potential. Our simulation results show that even without interfacial energy term, the viscous term can lead to transient diffuse interfaces. From the phase transition induced hysteresis, we discover different energy dissipation mechanism for the interfacial energy and the viscosity effect. In addition, by combining viscosity and interfacial energy, we find that if the former dominates, then the concentration difference across the phase boundary is reduced; conversely, if the interfacial energy is greater then this difference is enlarged.  相似文献   

13.
A rise in the condensation surface temperature during film growth is a result of energy dissipation on the condensation surface. An example of energy dissipation is the dissipation of chemical reaction heat, which releases during film deposition by reactive magnetron sputtering. The monitoring of the surface temperature during TiN film deposition by reactive (Ti–in–N2) and nonreactive (TiN–in–Ar or TiN–in–N2) sputtering methods has shown that this temperature is higher in the reactive case and decreases in the (TiN–in–Ar)–(TiN–in–N2) sequence of nonreactive sputtering modifications. It has been found that the composition and crystal structure of TiN films do not depend on the growth method and are identical to those of bulk titanium nitride. Based on these results, a formation mechanism of films obtained by the above methods has been suggested. In the case of reactive sputtering, the film was supposed to grow on the condensation surface through a reaction between titanium and nitrogen atoms. In the cases of nonreactive sputtering, the film forms from TiN molecules.  相似文献   

14.
Z. Song 《哲学杂志》2013,93(28):3215-3233
Oscillatory sliding contact between a rigid rough surface and an elastic–plastic half-space is examined in the context of numerical simulations. Stick-slip at asperity contacts is included in the analysis in the form of a modified Mindlin theory. Two friction force components are considered – adhesion (depending on the real area of contact, shear strength and interfacial adhesive strength) and plowing (accounting for the deformation resistance of the plastically deformed half-space). Multi-scale surface roughness is described by fractal geometry, whereas the interfacial adhesive strength is represented by a floating parameter that varies between zero (adhesionless surfaces) and one (perfectly adhered surfaces). The effects of surface roughness, apparent contact pressure, oscillation amplitude, elastic–plastic properties of the half-space and interfacial adhesion on contact deformation are interpreted in the light of numerical results of the energy dissipation, maximum tangential (friction) force and slip index. A non-monotonic trend of the energy dissipation and maximum tangential force is observed with increasing surface roughness, which is explained in terms of the evolution of the elastic and plastic fractions of truncated asperity contact areas. The decrease of energy dissipation with increasing apparent contact pressure is attributed to the increase of the elastic contact area fraction and the decrease of the slip index. For a half-space with fixed yield strength, a lower elastic modulus produces a higher tangential force, whereas a higher elastic modulus yields a higher slip index. These two competing effects lead to a non-monotonic dependence of the energy dissipation on the elastic modulus-to-yield strength ratio of the half-space. The effect of interfacial adhesion on the oscillatory contact behaviour is more pronounced for smoother surfaces because the majority of asperity contacts deform elastically and adhesion is the dominant friction mechanism. For rough surfaces, higher interfacial adhesion yields less energy dissipation because more asperity contacts exhibit partial slip.  相似文献   

15.
We present a theory for a finite-length superconducting nanowire coupled to an environment. We show that in the absence of dissipation quantum phase slips always destroy superconductivity, even at zero temperature. Dissipation stabilizes the superconducting phase. We apply this theory to explain the "antiproximity effect" recently seen by Tian et al. in zinc nanowires.  相似文献   

16.
The central collision of 40Ar and 208Pb is studied considering the ellipsoidal deformations and isovector dipole mode of motion in the approaching phase. The collective energy dissipation is suggested to originate from the Fermi surface deformation which is treated as a kinematically independent mode of motion within the canonical Lagrange-Rayleigh dynamics. The possible extensions of the approach are discussed. The potential energy surface, calculated using the generalized (folded) surface potential, is studied. The saddle point in the potential energy surface lying at the border of strongly deformed compact configurations is located. The potential energy at this point is about 10MeV smaller than that of the ions touching each other in the spherical shape. The examination of trajectories followed by the system in its evolution shows that the inertia forces strongly hinder the motion of ions along the potential energy valley. The collective energy dissipated during the approach is found to be smaller than the difference in the potential energies at saddle point and at the touching configuration of unpolarized ions.  相似文献   

17.
We perform numerical experiments of a dipole crashing into a wall, a generic event in two-dimensional incompressible flows with solid boundaries. The Reynolds number (Re) is varied from 985 to 7880, and no-slip boundary conditions are approximated by Navier boundary conditions with a slip length proportional to Re(-1). Energy dissipation is shown to first set up within a vorticity sheet of thickness proportional to Re(-1) in the neighborhood of the wall, and to continue as this sheet rolls up into a spiral and detaches from the wall. The energy dissipation rate integrated over these regions appears to converge towards Re-independent values, indicating the existence of energy dissipating structures that persist in the vanishing viscosity limit.  相似文献   

18.
A. Tordesillas 《哲学杂志》2013,93(32):4987-5016
Force chain buckling, leading to unjamming and shear banding, is examined quantitatively via a discrete element analysis of a two-dimensional, densely-packed, cohesionless granular assembly subject to quasistatic, boundary-driven biaxial compression. A range of properties associated with the confined buckling of force chains has been established, including: degree of buckling, buckling modes, spatial and strain evolution distributions, and relative contributions to non-affine deformation, dilatation and decrease in macroscopic shear strength and potential energy. Consecutive cycles of unjamming–jamming events, akin to slip–stick events arising in other granular systems, characterize the strain-softening regime and the shear band evolution. Peaks in the dissipation rate, kinetic energy and local non-affine strain are strongly correlated: the largest peaks coincide with each unjamming event that is evident in the concurrent drops in the macroscopic shear stress and potential energy. Unjamming nucleates from the buckling of a few force chains within a small region inside the band. A specific mode of force chain buckling, prevalent in and confined to the shear band, leads to above-average levels of local non-affine strain and release of potential energy during unjamming. Ongoing studies of this and other buckling modes from a structural stability standpoint serve as the basis for the formulation of internal variables and associated evolution laws, central to the development of thermomicromechanical constitutive theory for granular materials.  相似文献   

19.
Cu has been used extensively to replace Al as interconnects in ULSI and MEMS devices. However, because of the difference in the thermal expansion coefficients between the Cu film and the Si substrate, large biaxial stresses will be generated in the Cu film. Thus, the Cu film becomes unstable and even changes its morphologies which affects the device manufacturing yield and ultimate reliability. The structural stability and theoretical strength of Cu crystal under equal biaxial loading have been investigated by combining the MAEAM with Milstein-modified Born stability criteria. The results indicate that, under sufficient tension, there exists a stress-free BCC phase which is unstable and slips spontaneously to a stress-free metastable BCT phase by consuming internal energy. The stable region ranges from −15.131 GPa to 2.803 GPa in the theoretical strength or from −5.801% to 4.972% in the strain respectively.  相似文献   

20.
We examine frictional shakedown of an elastic contact of a cylinder pressed on a flat substrate. Slight oscillatory rolling of the cylinder varies the pressure distribution and the contact region. Together with the tangential load, this rocking motion causes incremental sliding processes and a macroscopic rigid body motion. In case that the oscillation amplitude is sufficiently small, the slip ceases after the first few periods and a safe shakedown occurs: the residual force in the contact withstands the tangential load. Otherwise ratcheting occurs: one side of the contact alternately sticks, while the other slips. This leads to a continuing rigid body motion. By derivation of the tangential stress distribution and use of the Boussinesq and Cerruti potential functions, we find approximations for the shakedown limits for the tangential load and the oscillation amplitude. This allows the accurate prediction of the displacement and the reduced tangential load capacity in the shakedown state. The results show strong agreement with numerical and experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号