首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
We show that a non-local form of the Gross-Pitaevskii equation describes not only long-wave excitations, but also the short-wave ones in Bose-condensate systems. At certain parameter values, the excitation spectrum mimics the Landau spectrum of quasi-particle excitations in superfluid helium with roton minimum. The excitation wavelength, at which the roton minimum exists, is close to the inter-particle interaction range. We determine how the roton gap and the effective roton mass depend on the interaction potential parameters, and show that the existence domain of the spectrum with a roton minimum is reduced if one accounts for an inter-particle attraction.  相似文献   

2.
The roton minimum is a deep minimum in the collective excitation spectrum of the liquid, forming around fairly high k ‐values. We have discovered, through MD simulations, that this appears to be a general feature of strongly coupled liquids and is ubiquitous in 2D and 3D Yukawa liquids. We suggest that the physical origin of the roton minimum has to be sought in the quasi‐localization of particles in a strongly correlated liquid and in the ensuing formation of local microcrystals whose averaged frequency dispersion would show roton minimum‐like feature (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Using the Green's function approach, the density–density correlation function and the dielectric function in the random-phase approximation for a quasi-two-dimensional (quasi-2D) dipolar Bose gas are derived. From the pole of the density correlation function, by considering thermally induced roton-like excitations, the excitation spectrum of the system is calculated. It is shown that the position and depth of the roton minimum of the excitation spectrum are tunable by changing the temperature. To show how the position of the roton minimum influences the phenomenon of superfluidity, the superfluid density of the system is obtained and it is shown that the interplay of the thermal rotonization, contact and dipole–dipole interaction (DDI) can affect the superfluid fraction of a quasi-2D Bose gas. It is found that contact, DDI interactions, and thermally induced rotons enhance the fluctuations and reduce the superfluid density. In the absence of DDI and thermally induced rotons, the usual T3 dependence of superfluid density in 2D is obtained and the correction T4 term arises from DDI. It is shown that if the roton minimum is close to zero, the thermally induced rotons change the linear temperature dependence of the superfluid fraction, leading to a transition to nontrivial supersolid phase.  相似文献   

4.
We calculate the spectrum of elementary excitations in a two-dimensional exciton condensate in the vicinity of a two-dimensional electron gas. We show that attraction of excitons due to their scattering with free electrons may lead to formation of a roton minimum. The energy of this minimum may go below the ground state energy which manifests breaking of the superfluidity. The Berezinsky-Kosterlitz-Thouless phase transition temperature decreases due to the exciton-exciton attraction mediated by electrons.  相似文献   

5.
The phase diagram of the superconducting high-T(c) cuprates is governed by two energy scales: T*, the temperature below which a gap is opened in the excitation spectrum, and T(c), the superconducting transition temperature. The way these two energy scales are reflected in the low-temperature energy gap is being intensively debated. Using Zn substitution and carefully controlled annealing we prepared a set of samples having the same T* but different T(c)'s, and measured their gap using angle-resolved photoemission spectroscopy (ARPES). We show that T(c) is not related to the gap shape or size, but it controls the size of the coherence peak at the gap edge.  相似文献   

6.
We estimate the condensation temperature for microcavity polaritons, allowing for their internal structure. We consider polaritons formed from localized excitons in a planar microcavity, using a generalized Dicke model. At low densities, we find a condensation temperature T(c) proportional, rho, as expected for a gas of structureless polaritons. However, as T(c) becomes of the order of the Rabi splitting, the structure of the polaritons becomes relevant, and the condensation temperature is that of a BCS-like mean-field theory. We also calculate the excitation spectrum, which is related to observable quantities such as the luminescence and absorption spectra.  相似文献   

7.
Finite temperature lattice simulations of quantum chromodynamics (QCD) are sensitive to the hadronic mass spectrum for temperatures below the "critical" temperature T(c) ≈ 160 MeV. We show that a recent precision determination of the QCD trace anomaly shows evidence for the existence of a large number of hadron states beyond those known from experiment. The lattice results are well represented by an exponentially growing mass spectrum up to a temperature T=155 MeV. Using simple parametrizations of the hadron mass spectrum we show how one may estimate the total spectral weight in these yet undermined states.  相似文献   

8.
We have studied the effect of both axial and transverse anisotropy on the critical field and thermodynamic properties of the field induced three dimensional antiferromagnetic Heisenberg model on the frustrated hexagonal lattice for Cs2CuCl4 compound. The spin model is mapped to a bosonic one with the hard core repulsion constraint and the Green’s function approach has been implemented to get the low energy spectrum and the corresponding thermodynamic properties. To find the critical field (B c ) we have looked for the Bose-Einstein condensation of quasi-particles (magnons) which takes place when the magnon spectrum vanishes at the ordering spiral wave vector. We have also obtained the dispersion of magnon spectrum in the critical magnetic field for each anisotropy parameter to find the spiral wave vector where the spectrum gets its minimum. The magnon energies show a linear dispersion relation close to the quantum critical point. The effect of hard core boson interaction on the single particle excitation energies leads to a temperature dependence of the magnon spectrum versus magnetic field. We have also studied the behavior of specific heat and static structure factor versus temperature and magnetic field.  相似文献   

9.
We calculate the location of the quantum phase transitions of a Bose gas trapped in an optical lattice as a function of effective scattering length a(eff) and temperature T. Knowledge of recent high-loop results on the shift of the critical temperature at weak couplings is used to locate a nose in the phase diagram above the free Bose-Einstein critical temperature T((0))(c), thus predicting the existence of a reentrant transition above T((0))(c), where a condensate should form when increasing a(eff). At zero temperature, the transition to the normal phase produces the experimentally observed Mott insulator.  相似文献   

10.
A systematic study of the effect of an electric field on the critical temperature of a pure fluid is made for the first time to our knowledge. An ac electric field is applied to a spherical capacitor filled with SF6 at its critical density, while the temperature is slowly ramped down through its critical temperature T(c). By continuously observing the light transmission through the fluid during the temperature ramp, a shift in T(c), DeltaT(c), is found at various electric fields. By shining the light vertically through the fluid, we utilize the density gradient induced by the fluid's weight to compensate for the effects of density changes from electrostriction. This technique effectively keeps the system at constant critical density with respect to the observation of T(c). We observe an increase in T(c) as expected from thermodynamic stability and renormalization group theory, but quantitatively larger by an order of magnitude.  相似文献   

11.
We show that a Bose-condensed gas, under extreme rotation in a 2D anisotropic trap, forms a novel elongated quantum fluid which has a roton-maxon excitation spectrum. For a sufficiently large interaction strength, the roton energy reaches zero and the system undergoes a second order quantum transition to the state with a periodic structure-rows of vortices. The number of rows increases with the interaction, and the vortices eventually form a triangular Abrikosov lattice.  相似文献   

12.
With a high-performance Monte Carlo algorithm we study the interaction-induced shift of the critical point in weakly interacting three-dimensional /psi/(4) theory (which includes quantum Bose gas). In terms of critical density, n(c), mass, m, interaction, U, and temperature, T, this shift is universal: Deltan(c)(T) = -Cm(3)T(2)U, the constant C found to be equal to 0.0140+/-0.0005. For quantum Bose gas with the scattering length a this implies DeltaT(c)/T(c) = C(0)an(1/3), with C(0) = 1.29+/-0.05.  相似文献   

13.
The aim of the present study is to determine the impact the finite size of dust particles has on the static and dynamic characteristics of the dust component of a plasma. Taking into account both the finite dimensions of dust grains and the plasma screening, a model expression is chosen for the interdust interaction potential. The static structure factor of dust particles is evaluated by iteratively solving the reference hypernetted‐chain approximation, which inherently contains the hard sphere model handled within the Percus–Yevick closure. The self‐consistent method of moments is then engaged to relate the static and dynamic structure factors by assuming that the second derivative of the dynamic structure factor with respect to the frequency vanishes at the origin. Thus, an analytical expression for the dynamic structure factor is validated over quite a broad domain of dusty plasma non‐ideality and grains packing fraction. The calculated spectrum of dust‐acoustic waves reveals the appearance of the roton minimum, which becomes less pronounced when the packing fraction of dust particles rises. It is also predicted that the wavenumber position of the roton minimum is de facto independent of the size of dust particles. New analytical expressions for the dust‐acoustic wave spectrum and decrement of damping are proposed and thoroughly checked.  相似文献   

14.
H. Haug 《Physics letters. A》1973,45(2):170-172
The transmission of monochromatic, high-frequency phonons from a solid into He-II by single-quantum processes is calculated. The roton minimum and especially pronounced the phonon maximum of the He-II spectrum show up as peaks in the transmission coefficient.  相似文献   

15.
The leading-order effect of interactions on a homogeneous Bose gas is theoretically predicted to shift the critical temperature by an amount DeltaT(c) approximately equal to ca(sc)n(1/3)T(0) from the ideal gas result T(0), where a(sc) is the scattering length, n is the density, and c is a pure number. There have been several different theoretical estimates for c. We claim to settle the issue by measuring the numerical coefficient in a lattice simulation of O(2) straight phi(4) field theory in three dimensions-an effective theory which, as observed previously in the literature, can be systematically matched to the dilute Bose gas problem to reproduce nonuniversal quantities such as the critical temperature. We find c = 1.32+/-0.02.  相似文献   

16.
We report systematic measurements of ac susceptibility, nuclear-quadrupole-resonance spectrum, and nuclear-spin-lattice-relaxation time (T1) on the pressure (P)-induced heavy-fermion superconductor CeRhIn5. The temperature (T) dependence of 1/T(1) at P=1.6 GPa has revealed that antiferromagnetism (AFM) and superconductivity (SC) coexist microscopically, exhibiting the respective transition at T(N)=2.8 K and T(MF)(c)=0.9 K. It is demonstrated that SC does not yield any trace of gap opening in low-lying excitations below T(onset)(c)=2 K, but T(MF)(c)=0.9 K, followed by a T(1)T=const law. These results point to the unconventional characteristics of SC coexisting with AFM. We highlight that both of the results deserve theoretical work on the gapless nature in the low-lying excitation spectrum due to the coexistence of AFM and SC and the lack of the mean-field regime below T(onset)(c)=2 K.  相似文献   

17.
One introduces a model of the superfluid state of a Bose liquid with repulsion between bosons, in which at T=0, along with a weak single-particle Bose-Einstein condensate, there exists an intensive pair coherent condensate, analogous to the Cooper condensate in a Fermi liquid with attraction between fermions. A closed system of nonlinear integral equations for the normal and anomalous self-energy parts is solved numerically, and a quasiparticle spectrum is obtained, which is in good agreement with the experimental spectrum of elementary excitations in superfluid 4He. It is shown that the roton minimum in the spectrum is associated with the negative minimum of the Fourier component of the pair interaction potential.  相似文献   

18.
We study the pair correlations and excitations of a dipolar Bose gas layer. The anisotropy of the dipole-dipole interaction allows us to tune the strength of pair correlations from strong to weak perpendicular and weak to strong parallel to the layer by increasing the perpendicular trap frequency. This change is accompanied by a roton-roton crossover in the spectrum of collective excitations, from a roton caused by the head-to-tail attraction of dipoles to a roton caused by the side-by-side repulsion, while there is no roton excitation for intermediate trap frequencies. We discuss the nature of these two kinds of rotons and the relation to instabilities of dipolar Bose gases. In both regimes of trap frequencies where rotons occur, we observe strong damping of collective excitations by decay into two rotons.  相似文献   

19.
We calculate the full phase diagram of spherical charged colloidal particles using Monte Carlo free energy calculations. The system is described using the primitive model, consisting of explicit hard-sphere colloids and point counterions in a uniform dielectric continuum. We show that the gas-liquid critical point becomes metastable with respect to a gas-solid phase separation at colloid charges Q > or =20 times the counterion charge. Approximate free energy calculations with only one and four particles in the fluid and solid phases, respectively, are used to determine the critical line for highly charged colloids up to Q=2000. We propose the scaling law T*(c) approximately Q(1/2) for this critical temperature.  相似文献   

20.
We study the condensed fraction of a harmonically trapped atomic Bose gas at the critical point predicted by mean-field theory. The nonzero condensed fraction f(0) is induced by critical correlations which increase the transition temperature T(c) above T(c) (MF). Unlike the T(c) shift in a trapped gas, f(0) is sensitive only to the critical behavior in the quasiuniform part of the cloud near the trap center. To leading order in the interaction parameter a/λ(0), where a is the s-wave scattering length and λ(0) the thermal wavelength, we expect a universal scaling f(0) proportionally (a/λ(0))(4). We experimentally verify this scaling using a Feshbach resonance to tune a/λ(0). Further, using the local density approximation, we compare our measurements with the universal result obtained from Monte Carlo simulations for a uniform system, and find excellent quantitative agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号