首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The multichannel reactions (1) HOCl + F --> products and (2) HOBr + F --> products have been investigated using the dual-level direct dynamics method. The minimum energy paths (MEPs) are calculated at both the MPW1K/6-311G(d,p) and QCISD/6-311G(d,p) levels, then the single-point energies are further corrected at the QCISD(T)/6-311++G(3df,3pd) level of theory. There are hydrogen-bonded complexes with the energies less than those of the reactants or products located at the entrance or exit channel of both hydrogen abstraction reactions; while for the halogen abstraction channels only one complex exists at the reactant side in the bromine abstraction channel. The rate constants are evaluated by the improved canonical variational transition-state theory (ICVT). The agreement of the rate constants with available experimental values for two reactions at room temperature is good. Theoretical results indicate that for the reaction HOCl + F, hydrogen abstraction channel leading to the formation of HF + ClO will predominate the reaction over the whole temperature range, and the reaction of HOBr + F may proceed mainly through the bromine abstraction channel at the lower temperature while the contribution of hydrogen abstraction channel will become significant as the temperature increases. Because of lack of the kinetic data of these reactions, the present theoretical results are expected to be useful and reasonable to estimate the dynamical properties of these reactions over a wide temperature range where no experimental value is available.  相似文献   

2.
The multiple-channel reactions OH + CH3NHC(O)OCH3 --> products are investigated by direct dynamics method. The optimized geometries, frequencies, and minimum energy path are all obtained at the MP2/6-311+G(d,p) level, and energetic information is further refined by the BMC-CCSD (single-point) method. The rate constants for every reaction channels, R1, R2, R3, and R4, are calculated by canonical variational transition state theory with small-curvature tunneling correction over the temperature range 200-1000 K. The total rate constants are in good agreement with the available experimental data and the two-parameter expression k(T) = 3.95 x 10(-12) exp(15.41/T) cm3 molecule(-1) s(-1) over the temperature range 200-1000 K is given. Our calculations indicate that hydrogen abstraction channels R1 and R2 are the major channels due to the smaller barrier height among four channels considered, and the other two channels to yield CH3NC(O)OCH3 + H2O and CH3NHC(O)(OH)OCH3 + H2O are minor channels over the whole temperature range.  相似文献   

3.
A direct dynamics study is carried out for the hydrogen abstraction reactions Cl + CH(4-n)F(n) (n = 1-3) in the temperature range of 200-1,000 K. The minimum energy paths (MEPs) of these reactions are calculated at the BH&H-LYP/6-311G(d,p) level, and the energies along the MEPs are further refined at the QCISD(T)/6-311+G(2df,2p) and QCISD(T)/6-311+G(d,p) (single-point) level. The rate constants obtained by using the improved canonical variational transition state theory incorporating small-curvature tunneling correction (ICVT/SCT) are in good agreement with the available experimental results. It is shown that the vibrational adiabatic potential energy curves for these reactions have two barriers, a situation similar to the analogous reactions CH(3)X+Cl (X=Cl, Br). The theoretical results show that for the title reactions the variational effect should not be neglected over the whole considered temperature range, while the small-curvature tunneling effect is only important in the lower temperature range. The effects of fluorine substitution on the rate of this kind of reactions are also examined.  相似文献   

4.
The reaction mechanism of CF(3)CH(2)OH with OH is investigated theoretically and the rate constants are calculated by direct dynamics method. The potential energy surface (PES) information, which is necessary for dynamics calculation, is obtained at the B3LYP/6-311G (d, p) level. The single-point energy calculations are performed at the MC-QCISD level using the B3LYP geometries. Complexes, with the energies being less than corresponding reactants and products, are found at the entrance and exit channels for methylene-H-abstraction channel, while for the hydroxyl-H-abstraction channel only entrance complex is located. By means of isodesmic reactions, the enthalpies of the formation for the species CF(3)CH(2)OH, CF(3)CHOH, and CF(3)CH(2)O are estimated at the MC-QCISD//B3LYP/6-311G (d, p) level of theory. The rate constants for two kinds of H-abstraction channels are evaluated by canonical variational transition state theory with the small-curvature tunneling correction (CVT/SCT) over a wide range of temperature 200-2000 K. The calculated results are in good agreement with the experimental values in the temperature region 250-430 K. The present results indicate that the two channels are competitive. Below 289 K, hydroxyl-H-abstraction channel has more contribution to the total rate constants than methylene-H-abstraction channel, while above 289 K, methylene-H-abstraction channel becomes more important and then becomes the major reaction channel.  相似文献   

5.
The dual-level direct dynamics approach is employed to study the dynamics of the CH(3)OCH(3) + H (R1) and CH(3)OCH(3) + CH(3) (R2) reactions. Low-level calculations of the potential energy surface are carried out at the MP2/6-311+G(d,p) level of theory. High-level energetic information is obtained at the QCISD(T) level of theory with the 6-311+G(3df,3pd) basis set. The dynamics calculations are performed using variational transition state theory (VTST) with the interpolated single-point energies (ISPE) method, and small-curvature tunneling (SCT) is included. It is shown that the reaction of CH(3)OCH(3) with H (R1) may proceed much easier and with a lower barrier height than the reaction with CH(3) radical (R2). The calculated rate constants and activation energies are in good agreement with the experimental values. The calculated rate constants are fitted to k(R1) = 1.16 x 10(-19) T(3) exp(-1922/T) and k(R2) = 1.66 x 10(-28) T(5) exp(-3086/T) cm(3) mol(-1) s(-1) over a temperature range 207-2100 K. Furthermore, a small variational effect and large tunneling effect in the lower temperature range are found for the two reactions.  相似文献   

6.
The mechanisms and kinetics studies of the OH radical with alkyl hydroperoxides CH(3)OOH and CH(3)CH(2)OOH reactions have been carried out theoretically. The geometries and frequencies of all the stationary points are calculated at the UBHandHLYP/6-311G(d,p) level, and the energy profiles are further refined by interpolated single-point energies method at the MC-QCISD level of theory. For two reactions, five H-abstraction channels are found and five products (CH(3)OO, CH(2)OOH, CH(3)CH(2)OO, CH(2)CH(2)OOH, and CH(3)CHOOH) are produced during the above processes. The rate constants for the CH(3)OOH/CH(3)CH(2)OOH + OH reactions are corrected by canonical variational transition state theory within 250-1500 K, and the small-curvature tunneling is included. The total rate constants are evaluated from the sum of the individual rate constants and the branching ratios are in good agreement with the experimental data. The Arrhenius expressions for the reactions are obtained.  相似文献   

7.
The hydrogen abstraction reactions of Cl atom with a series of fluorinated alcohols, i.e., CH(3-n)F(n)CH(2)OH + Cl (n = 1-3) (R1-R3) have been studied systematically by ab initio direct dynamics method and the canonical variational transition state theory (CVT). The potential energy surface information is calculated at the MP2/6-311G(d,p) level. Energies along the minimum energy paths are improved by a series of single-point calculations at the higher modified GAUSSIAN-2 (G2M) level of theory. Theoretical analysis shows that three kinds of hydrogen atoms can be abstracted from the reactants CH(2)FCH(2)OH and CHF(2)CH(2)OH, and for CF(3)CH(2)OH, two possible pathways are found. The rate constants for each reaction channel are evaluated by CVT with the small-curvature tunneling correction (SCT) over a wide range of temperature from 200 to 2000 K. The calculated CVT/SCT rate constants are in good agreement with the available experimental values for the reactions CHF(2)CH(2)OH + Cl and CF(3)CH(2)OH + Cl. However, for the reaction CH(2)FCH(2)OH + Cl, there is negative temperature dependence below 500 K, which is different from the experimental fitted. It is shown that in the low temperature ranges, the three reactions all proceed predominantly via H-abstraction from the methylene positions, and with the increase of the temperature the H-abstraction channels from the fluorinated-methyl positions should be taken into account, while the H-abstraction channels from the hydroxyl groups are negligible over the whole temperature ranges. Also, the reactivity decreases substantially with fluorine substitution at the methyl position of alcohol.  相似文献   

8.
The dynamic properties of the multichannel hydrogen abstraction reactions of CH(3)CH(2)Br + OH --> products and CH(3)CHBr(2) + OH --> products are studied by dual-level direct dynamics method. For each reaction, three reaction channels, one for alpha-hydrogen abstraction and two for beta-hydrogen abstractions, have been identified. The minimum energy paths (MEPs) of both the reactions are calculated at the Becke's half-and-half (BH&H)-Lee-Yang-Parr (LYP)/6-311G(d, p) level and the energy profiles along the MEPs are further refined with interpolated single-point energies (ISPE) method at the G2M(RCC5)//BH&H-LYP level. There are complexes with energies less than those of the reactants or products located at the entrance or exit channels, which indicates that the reactions may proceed via an indirect mechanism. By canonical variational transition-state theory (CVT) the rate constants are calculated incorporating the small-curvature tunneling (SCT) correction in the temperature range of 220-2000 K. The agreement of the rate constants with available experimental values for two reactions is good in the measured temperature range. The calculated results show that alpha-hydrogen abstraction channel is the major reaction pathway in the lower temperature for two reactions, while the contribution of beta-hydrogen abstraction will increase with the increase in temperature.  相似文献   

9.
By means of the dual‐level direct dynamics method, the mechanisms of the reactions, CH3CF2Cl + OH → products (R1) and CH3CFCl2 + OH → products (R2), are studied over a wide temperature range 200–2000 K. The optimized geometries and frequencies of the stationary points are calculated at the MP2/6‐311G(d,p) level, and then the energy profiles of the reactions are refined with the interpolated single‐point energy method at the G3(MP2) level. The canonical variational transition‐state theory with the small‐curvature tunneling (SCT) correction method is used to calculate the rate constants. For the title reactions, three reaction channels are identified and the H‐abstraction channel is the major pathway. The results indicate that F substitution has a significant (reductive) effect on hydrochlorofluorocarbon reactivity. Also, for all H‐abstraction reaction channels the variational effect is small and the SCT effect is only important in the lower temperature range on the rate constants calculation. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

10.
The mechanisms and dynamics studies of the OH radical and Cl atom with CF(3)CHClOCHF(2) and CF(3)CHFOCHF(2) have been carried out theoretically. The geometries and frequencies of all the stationary points are optimized at the B3LYP/6-311G(d,p) level, and the energy profiles are further refined by interpolated single-point energies (ISPE) method at the G3(MP2) level of theory. For each reaction, two H-abstraction channels are found and four products (CF(3)CHFOCF(2), CF(3)CFOCHF(2), and CF(3)CHClOCF(2), CF(3)CClOCHF(2)) are produced during the above processes. The rate constants for the CF(3)CHClOCHF(2)/CF(3)CHFOCHF(2) + OH/Cl reactions are calculated by canonical variational transition-state theory (CVT) within 200-2000 K, and the small-curvature tunneling is included. The total rate constants calculated from the sum of the individual rate constants and the branching ratios are in good agreement with the experimental data. The Arrhenius expressions for the reactions are obtained. Our calculation shows that the substitution of Cl by F decreases the reactivity of CF(3)CHClOCHF(2) toward OH and Cl. In addition, the mechanisms of subsequent reactions of product radicals and OH radical are further investigated at the G3(MP2)//B3LYP/6-311G(d,p) level, and the main products are predicted in the this article.  相似文献   

11.
王文亮  刘艳  王渭娜  罗琼  李前树 《化学学报》2005,63(17):1554-1560
采用密度泛函方法(MPW1PW91)在6-311G(d,p)基组水平上研究了CH3S自由基H迁移反应CH3S→CH2SH (R1), 脱H2反应CH3S→HCS+H2 (R2)以及脱H2产物HCS异构化反应HCS→CSH (R3)的微观动力学机理. 在QCISD(t)/6- 311++G(d,p)//MPW1PW91/6-311G(d,p)+ZPE水平上进行了单点能校正. 利用经典过渡态理论(TST)与变分过渡态理论(CVT)分别计算了各反应在200~2000 K温度区间内的速率常数kTSTkCVT, 同时获得了经小曲率隧道效应模型(SCT)校正后的速率常数kCVT/SCT. 结果表明, 反应 R1, R2 和R3的势垒△E分别为160.69, 266.61和241.63 kJ/mol, R1为反应的主通道. 低温下CH3S比CH2SH稳定, 高温时CH2SH比CH3S更稳定. 另外, 速率常数计算结果显示, 量子力学隧道效应在低温段对速率常数的计算有显著影响, 而变分效应在计算温度段内对速率常数的影响可以忽略.  相似文献   

12.
Ab initio direct dynamics method has been used to study the title reaction. Electronic structure information including geometries, gradients and force constants (Hessians) are calculated at the UQCISD/6-311+G** level. Energies along the minimum energy path are improved by a series of single-point G2//QCISD calculations. The changes of the geometries, vibratioanal frequencies, potential energies and total curvature along the reaction path are discussed. The rate constants in the temperature range 200–3000 K are calculated by canonical variational transition state theory with small-curvature tunneling correction (CVT/SCT) method. The results show that the variational effect is small and in the lower temperature range, the small curvature tunneling effect is important for the reaction.  相似文献   

13.
A dual-level direct dynamics study has been carried out for the two hydrogen abstraction reactions CF(3)CHCl(2)+Cl and CF(3)CHFCl+Cl. The geometries and frequencies of the stationary points are optimized at the BHLYP/6-311G(d,p), B3LYP/6-311G(d,p), and MP2/6-31G(d) levels, respectively, with single-point calculations for energy at the BHLYP/6-311++G(3df,2p), G3(MP2), and QCISD(T)/6-311G(d,p) levels. The enthalpies of formation for the species CF(3)CHCl(2), CF(3)CHFCl, CF(3)CCl(2), and CF(3)CFCl are evaluated at higher levels. With the information of the potential energy surface at BHLYP/6-311++G(3df,2p)//6-311G(d,p) level, we employ canonical variational transition-state theory with small-curvature tunneling correction to calculate the rate constants. The agreement between theoretical and experimental rate constants is good in the measured temperature range 276-382 K. The effect of fluorine substitution on reactivity of the C-H bond is discussed.  相似文献   

14.
The multiple channel reaction H + CH(3)CH(2)Cl --> products has been studied by the ab initio direct dynamics method. The potential energy surface information is calculated at the MP2/6-311G(d,p) level of theory. The energies along the minimum energy path are further improved by single-point energy calculations at the PMP4(SDTQ)/6-311+G(3df,2p) level of theory. For the reaction, four reaction channels (one chlorine abstraction, one alpha-hydrogen abstraction, and two beta-hydrogen abstractions) have been identified. The rate constants for each reaction channel are calculated by using canonical variational transition state theory incorporating the small-curvature tunneling correction in the temperature range 298-5000 K. The total rate constants, which are calculated from the sum of the individual rate constants, are in good agreement with the experimental data. The calculated temperature dependence of the branching fractions indicates that for the title reaction, H-abstraction reaction is the major reaction channel in the whole temperature range 298-5000 K.  相似文献   

15.
The mechanisms of the reactions: CH(3)CFCl(2) + Cl (R1) and CH(3)CF(2)Cl + Cl (R2) are studied over a wide temperature range (200-3000 K) using the dual-level direct dynamics method. The minimum energy path calculation is carried out at the MP2/6-311G(d,p) and B3LYP/6-311G(d,p) levels, and energetic information is further refined by the G3(MP2) theory. The H-abstraction from the out-of-plane for (R1) is the major reaction channel, while the in-plane H-abstraction is the predominant route of (R2). The canonical variational transition-state theory (CVT) with the small-curvature tunneling (SCT) correction method is used to calculate the rate constants. Using group-balanced isodesmic reactions and hydrogenation reactions as working chemical reactions, the standard enthalpies of formation for CH(3)CFCl(2), CH(3)CF(2)Cl, CH(2)CFCl(2), and CH(2)CF(2)Cl are evaluated at the CCSD(T)/6-311 + G(3df,2p)//MP2/6-311G(d,p) level of theory. The results indicate that the substitution of fluorine atom for the chlorine atom leads to a decrease in the C-H bond reactivity with a small increase in reaction enthalpies. Also, for all reaction pathways the variational effect is small and the SCT effect is only important in the lower temperature range on the rate constants.  相似文献   

16.
采用直接动力学的方法,对多通道反应体系Br+CH3S(O)CH3进行了理论研究.在BH&H-LYP/6-311G(2d,2p)水平下获得了优化几何构型、频率及最小能量路径(MEP),能量信息的进一步确认在MC-QCISD(单点)水平下完成.利用正则变分过渡态理论,结合小曲率隧道效应校正(CVT/SCT)方法计算了该反应的两个可行的反应通道在200K~2000K温度范围内的速率常数.在整个反应区间内,生成HBr的反应通道与生成CHa的反应通道存在着竞争,前者是主反应通道,后者是次反应通道.变分效应和小曲率隧道效应对反应速率常数的计算影响都很小.理论计算得到的两个反应通道的反应速率常数与实验值符合得很好.  相似文献   

17.
The potential energy surface, including the geometries and frequencies of the stationary points, of the reaction HFCO + OH is calculated using the MP2 method with 6-31+G(d,p) basis set, which shows that the direct hydrogen abstraction route is the most dominating channel with respect to addition and substitution channels. For the hydrogen abstraction reaction, the single-point energies are refined at the QCISD(T) method with 6-311++G(2df,2pd) basis set. The calculated standard reaction enthalpy and barrier height are -17.1 and 4.9 kcal mol(-1), respectively, at the QCISD(T)/6-311++G(2df,2pd)//MP2/6-31+G(d,p) level of theory. The reaction rate constants within 250-2500 K are calculated by the improved canonical variational transition state theory (ICVT) with small-curvature tunneling (SCT) correction at the QCISD(T)/6-311++G(2df,2pd)//MP2/6-31+G(d,p) level of theory. The fitted three-parameter formula is k = 2.875 x 10(-13) (T/1000)1.85 exp(-325.0/T) cm(3) molecule(-1) s(-1). The results indicate that the calculated ICVT/SCT rate constant is in agreement with the experimental data, and the tunneling effect in the lower temperature range plays an important role in computing the reaction rate constants.  相似文献   

18.
The hydrogen abstraction reactions by a hydroxyl radical from 1,1,2,2,3-fluorinated propane (CF2HCF2CFH2) have been investigated by the dual-level direct dynamics method. Three equilibrium conformers (I, II, III) of CF2HCF2CFH2, one with Cs and two with C1 symmetries, are identified by the rotations of -CFH2 and -CF2H groups. Two transition states are located for the conformer I (Cs symmetry) + OH --> products (R1) reaction, and three distinct transition states are identified for conformers II and III (C1 symmetry) + OH --> products (R2 and R3). The optimized geometries and harmonic vibrational frequencies of all reactants, complexes, transition states, and products are calculated at the BB1K/6-31+G(d,p) level of theory. The single-point energy calculations are performed at the G3(MP2) level using the BB1K geometries. Using improved canonical variational transition-state theory (ICVT) with the small-curvature tunneling correction (SCT), the rate constants for each channel are calculated over a wide temperature range of 200-2000 K. It is found that the H-abstraction reaction from the -CFH2 group is the predominant product channel for three reactions. The total rate constant is evaluated by the Boltzmann distribution function, and the agreement between theoretical and experimental values is good.  相似文献   

19.
The hydrogen abstraction reactions of OH radicals with CH3CH2CH2Cl (R1) and CH3CHClCH3 (R2) have been investigated theoretically by a dual‐level direct dynamics method. The optimized geometries and frequencies of the stationary points are calculated at the B3LYP/6‐311G(d,p) level. To improve the reaction enthalpy and potential barrier of each reaction channel, the single point energy calculation is performed by the BMC‐CCSD method. Using canonical variational transition‐state theory (CVT) with the small‐curvature tunneling correction, the rate constants are evaluated over a wide temperature range of 200–2000 K at the BMC‐CCSD//B3LYP/6‐311G(d,p) level. For the reaction channels with the negative barrier heights, the rate constants are calculated by using the CVT. The calculated total rate constants are consistent with available experimental data. The results show that at lower temperatures, the tunneling correction has an important contribution in the calculation of rate constants for all the reaction channels with the positive barrier heights, while the variational effect is found negligible for some reaction channels. For reactions OH radicals with CH3CH2CH2Cl (R1) and CH3CHClCH3 (R2), the channels of H‐abstraction from –CH2– and –CHCl groups are the major reaction channels, respectively, at lower temperatures. With temperature increasing, contributions from other channels should be taken into account. Finally, the total rate constants are fitted by two models, i.e., three‐parameter and four‐parameter expressions. The enthalpies of formation of the species CH3CHClCH2, CH3CHCH2Cl, and CH2CH2CH2Cl are evaluated by isodesmic reactions. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

20.
The reactions of OH (OD) radicals with CF2ClCClFH (R1), CF2ClCCl2H (R2), CFCl2CClFH (R3), and CFCl2CCl2H (R4) have been investigated theoretically by a dual-level direct dynamics method. The optimized geometries and frequencies of the stationary points are calculated at the MPW1K/6-311+G(d,p) level. To improve the reaction enthalpy and potential barrier of each reaction channel, the single-point energy calculation is made by the MC-QCISD method. The enthalpies of formation of the species CF2ClCClFH, CF2ClCCl2H, CFCl2CClFH, CFCl2CCl2H, CF2ClCClF, CF2ClCCl2, CFCl2CClF, and CFCl2CCl2 are evaluated by two sets of isodesmic reactions. Using canonical variational transition state theory (CVT) with the small-curvature tunneling correction (SCT) method, the rate constants of OH and OD radicals with CF2ClCClXH (X = F, Cl) and CFCl2CClXH (X = F, Cl) are evaluated over a wide temperature range of 100–2,000 K at the MC-QCISD//MPW1K/6-311+G(d,p) level. The calculated CVT/SCT rate constants are consistent with available experimental data. The results show that the tunneling correction has an important contribution in the calculation of rate constants at lower temperatures. For the above-mentioned four reactions, the kinetic isotope effects are also calculated. Finally, the effect of fluorine or chlorine substitution on reactivity of the C–H bond is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号