首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Solvation of dicarboxylate dianions of varying length of the aliphatic chain in water clusters and in extended aqueous slabs was investigated using photoelectron spectroscopy and molecular dynamics simulations. Photoelectron spectra of hydrated succinate, adipate, and tetradecandioic dianions with up to 20 water molecules were obtained. Even-odd effects were observed as a result of the alternate solvation mode of the two negative charges with increasing solvent numbers. The competition between hydrophilic interactions of the charged carboxylate groups and hydrophobic interactions of the aliphatic chain leads to conformation changes in large water clusters containing dicarboxylates bigger than adipate. It also leads to a transition from bulk aqueous solvation of small dicarboxylates to solvation at the water/vapor interface of the larger ones. Whereas oxalate and adipate solvate in the inner parts of the aqueous slab, suberate and longer dicarboxylate dianions have a strong propensity to the surface. This transition also has consequences for the folding of the flexible aliphatic chain and for the structure of aqueous solvation shells around the dianions.  相似文献   

2.
We study the solvation of polar molecules in water. The center of water's dipole moment is offset from its steric center. In common water models, the Lennard-Jones center is closer to the negatively charged oxygen than to the positively charged hydrogens. This asymmetry of water's charge sites leads to different hydration free energies of positive versus negative ions of the same size. Here, we explore these hydration effects for some hypothetical neutral solutes, and two real solutes, with molecular dynamics simulations using several different water models. We find that, like ions, polar solutes are solvated differently in water depending on the sign of the partial charges. Solutes having a large negative charge balancing diffuse positive charges are preferentially solvated relative to those having a large positive charge balancing diffuse negative charges. Asymmetries in hydration free energies can be as large as 10 kcal/mol for neutral benzene-sized solutes. These asymmetries are mainly enthalpic, arising primarily from the first solvation shell water structure. Such effects are not readily captured by implicit solvent models, which respond symmetrically with respect to charge.  相似文献   

3.
4.
The solvent molecular distribution significantly affects the behavior of the solute molecules and is thus important in studying many biological phenomena. It can be described by the solvent molecular density distribution, g, and the solvent electric dipole distribution, p. The g and p can be computed directly by counting the number of solvent molecules/dipoles in a microscopic volume centered at r during a simulation or indirectly from the mean force F and electrostatic field E acting on the solvent molecule at r, respectively. However, it is not clear how the g and p derived from simulations depend on the solvent molecular center or the solute charge and if the g(F) and p(E) computed from the mean force and electric field acting on the solvent molecule, respectively, could reproduce the corresponding g and p obtained by direct counting. Hence, we have computed g, p, g(F), and p(E) using different water centers from simulations of a solute atom of varying charge solvated in TIP3P water. The results show that g(F) and p(E) can reproduce the g and p obtained using a given count center. This implies that rather than solving the coordinates of each water molecule by MD simulations, the distribution of water molecules could be indirectly obtained from analytical formulas for the mean force F and electrostatic field E acting on the solvent molecule at r. Furthermore, the dependence of the g and p distributions on the solute charge revealed provides an estimate of the change in g and p surrounding a biomolecule upon a change in its conformation.  相似文献   

5.
We report molecular dynamics simulations of three globular proteins: ubiquitin, apo-calbindin D(9K), and the C-terminal SH2 domain of phospholipase C-gamma1 in explicit water. The proteins differ in their overall charge and fold type and were chosen to represent to some degree the structural variability found in medium-sized proteins. The length of each simulation was at least 15 ns, and larger than usual solvent boxes were used. We computed radial distribution functions, as well as orientational correlation functions about the surface residues. Two solvent shells could be clearly discerned about charged and polar amino acids. Near apolar amino acids the water density near such residues was almost devoid of structure. The mean residence time of water molecules was determined for water shells about the full protein, as well as for water layers about individual amino acids. In the dynamic properties, two solvent shells could be characterized as well. However, by comparison to simulations of pure water it could be shown that the influence of the protein reaches beyond 6 A, i.e., beyond the first two shells. In the first shell (r < or =3.5 A), the structural and dynamical properties of solvent waters varied considerably and depended primarily on the physicochemical properties of the closest amino acid side chain, with which the waters interact. By contrast, the solvent properties seem not to depend on the specifics of the protein studied (such as the net charge) or on the secondary structure element in which an amino acid is located. While differing considerably from the neat liquid, the properties of waters in the second solvation shell (3.5< r < or =6 A) are rather uniform; a direct influence from surface amino acids are already mostly shielded.  相似文献   

6.
K Ban  K Jinno 《Analytical sciences》2001,17(1):113-117
A molecular-dynamics simulation method has been applied to investigate the influence of the mobile-phase composition on the retention of solutes in HPLC. The distribution profiles of the distance between two atoms in ODS ligands were constructed to characterize the conformation of ODS ligand molecules. The distinct difference of ODS conformation is observed by comparing molecular models consisting of solvent molecules at each solvent composition. The distribution profiles of the distance between the mobile-phase solvent molecules and ODS ligand molecules were also constructed to characterize the distribution of the solvent molecules at each composition. In all distribution profiles, the difference in the distribution due to a change in the solvent compositions was very clearly found, and the facts seem to be very reasonable. The distribution profiles of the distance between the solute, n-propylbenzene, and the terminal carbon atom in the ODS ligand, and between the solute and the silicon atom in the ODS ligand have been also constructed to see the distribution of the solutes in the separation system. The calculated solute distribution in the ODS-methanol/water system is very consistent with the actual chromatographic retention behaviors.  相似文献   

7.
We have analyzed a set of molecular dynamics (MD) trajectories of maltose in vacuum and water for solute imposed structuring on the solvent. To do this, we used a novel technique to calculate water probability densities to locate the areas in which the solvent is most populated in the maltose solution. We found that only the layer of water within the first maltose hydration shell has a probability density 50% and greater than that of bulk water. On investigating this water layer using Voronoi polyhedra (VP) analysis it was seen that only the waters adjacent to the hydrophobic (CH and CH2) groups are more structured than bulk water. We found that in a maltose solution of approximately 1.0 g/cm3 the solute does not disrupt the structure of the surrounding water beyond the first hydration shell. Next we performed a 700‐ps MD simulation of a maltohexaose strand in a box of 4096 SPC/E waters. The water probability density calculations and the VP analysis of the maltohexaose solution show that the larger amylose repeat unit decreases the solvent configurational entropy of the water beyond the first hydration shell. Analysis of this trajectory reveals that the helical conformation of the maltohexaose strand is preserved via bridging intermolecular water hydrogen bonds, indicating that a single amylose helical turn in water is preserved by hydrophilic and not hydrophobic interactions. Using VP analysis we present a method to accurately determine the number of water molecules in the first hydration shell of dissolved solutes. In the case of maltose, there are 40 water molecules in this shell, while for maltohexaose the number is 98. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 445–456, 2001  相似文献   

8.
9.
Intramolecular hydrogen‐bonding (H‐bonding) is commonly regarded as a major determinant of the conformation of (bio)molecules. However, in an aqueous environment, solvent‐exposed H‐bonds are likely to represent only a marginal (possibly adverse) conformational driving as well as steering force. For example, the hydroxymethyl rotamers of glucose and galactose permitting the formation of an intramolecular H‐bond with the adjacent hydroxyl group are not favored in water but, in the opposite, least populated. This is because the solvent‐exposed H‐bond is dielectrically screened as well as subject to intense H‐bonding competition by the water molecules. In the present study, the effect of a decrease in the solvent polarity on this rotameric equilibrium is probed using molecular dynamics simulation. This is done by considering six physical solvents (H2O, DMSO , MeOH , CHC l3, CC l4, and vacuum), along with 19 artificial water‐like solvent models for which the dielectric permittivity and H‐bonding capacity can be modulated independently via a scaling of the O–H distance and of the atomic partial charges. In the high polarity solvents, the intramolecular H‐bond is observed, but arises as an opportunistic consequence of the proximity of the H‐bonding partners in a given rotameric state. Only when the polarity of the solvent is decreased does the intramolecular H‐bond start to induce a conformational pressure on the rotameric equilibrium. The artificial solvent series also reveals that the effects of the solvent permittivity and of its H‐bonding capacity mutually enhance each other, with a slightly larger influence of the permittivity. The hydroxymethyl conformation in hexopyranoses appears to be particularly sensitive to solvent‐polarity effects because the H‐bond involving the hydroxymethyl group is only one out of up to five H‐bonds capable of forming a network around the ring.  相似文献   

10.
Gauss's law or Poisson's equation is conventionally used to calculate solvation free energy. However, the near‐solute dielectric polarization from Gauss's law or Poisson's equation differs from that obtained from molecular dynamics (MD) simulations. To mimic the near‐solute dielectric polarization from MD simulations, the first‐shell water was treated as two layers of surface charges, the densities of which are proportional to the electric field at the solvent molecule that is modeled as a hard sphere. The intermediate water was treated as a bulk solvent. An equation describing the solvation free energy of ions using this solvent scheme was derived using the TIP3P water model. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Ab initio-based charge partitioning of ionic systems results in ions with non-integer charges. This charge-transfer (CT) effect alters both short- and long-range interactions. Until recently, the effects of CT have been mostly neglected in molecular dynamics (MD) simulations. The method presented in this paper for including charge transfer between ions and water is consistent with ab initio charge partitioning and does not add significant time to the simulation. The ions of sodium, potassium, and chloride are parameterized to reproduce dimer properties and aqueous structures. The average charges of the ions from MD simulations (0.900, 0.919, and -0.775 for Na(+), K(+), and Cl(-), respectively) are consistent with quantum calculations. The hydration free energies calculated for these ions are in agreement with experimental estimates, which shows that the interactions are described accurately. The ions also have diffusion constants in good agreement with experiment. Inclusion of CT results in interesting properties for the waters in the first solvation shell of the ions. For all ions studied, the first shell waters acquire a partial negative charge, due to the difference between water-water and water-ion charge-transfer amounts. CT also reduces asymmetry in the solvation shell of the chloride anion, which could have important consequences for the behavior of chloride near the air-water interface.  相似文献   

12.
A new method for performing molecular dynamics simulations with fluctuating charge polarizable potentials is introduced. In fluctuating charge models, polarizability is treated by allowing the partial charges to be variables, with values that are coupled to charges on the same molecule as well as those on other molecules. The charges can be efficiently propagated in a molecular dynamics simulation using extended Lagrangian dynamics. By making a coordinate change from the charge variables to a set of normal mode charge coordinates for each molecule, a new method is constructed in which the normal mode charge variables uncouple from those on the same molecule. The method is applied to the TIP4P-FQ model of water and compared to other methods for implementing the dynamics. The methods are compared using different molecular dynamics time steps.  相似文献   

13.
A polarizable molecular dynamics model for adiabatic electron transfer across the electrode|electrolyte interface is presented. The electronic polarizability of the water and of the metal electrode is accounted for by a dynamical fluctuating charge algorithm, image charges, and the Ewald summation adapted for a conducting interface. The effects of the solvent electronic polarizability are studied by computing the diabatic and adiabatic free energy curves for both polarizable and non-polarizable water models. This represents the first effort to compute the adiabatic free energy curves from simulation for a fully polarizable electrochemical system.  相似文献   

14.
Many structural models for the stationary phase in reversed-phase liquid chromatography (RPLC) systems have been suggested from thermodynamic and spectroscopic measurements and theoretical considerations. To provide a molecular picture of chain conformation and solvent partitioning in a typical RPLC system, a particle-based Monte Carlo simulation study is undertaken for a dimethyl octadecyl (C(18)) bonded stationary phase on a model siliceous substrate in contact with mobile phases having different methanol/water concentrations. Following upon previous simulations for gas-liquid chromatography and liquid-liquid phase equilibria, the simulations are conducted using the configurational-bias Monte Carlo method in the Gibbs ensemble and the transferable potentials for phase equilibria force field. The simulations are performed for a chain surface density of 2.9 micromol/m(2), which is a typical bonded-phase coverage for mono-functional alkyl silanes. The solvent concentrations used here are pure water, approximately 33 and 67% mole fraction of methanol and pure methanol. The simulations show that the chain conformation depends only weakly on the solvent composition. Most chains are conformationally disordered and tilt away from the substrate normal. The interfacial width increases with increasing methanol content and, for mixtures, the solvent shows an enhancement of the methanol concentration in a 10 Angstrom region outside the Gibbs dividing surface. Residual surface silanol groups are found to provide hydrogen bonding sites that lead to the formation of substrate bound water and methanol clusters, including bridging clusters that penetrate from the solvent/chain interfacial region all the way to the silica surface.  相似文献   

15.
The IPolQ-Mod charges, which are the average of two charge sets fitted in vacuum state and condensed phase, take account of polarization effect implicitly in the solvation free energy calculation. However, the performance of the IPolQ-Mod charges sensitively depends on the QM levels used to generate the electrostatic potential from which the charges are fitted. In addition, the forces on atoms are not accurate theoretically in the molecular dynamics (MD) simulation as the solvent only feels the electrostatic potential of a half-polarized density of the solute according to the derivation of the IPolQ-Mod charges. To study these issues in detail, the IPolQ-Mod charges are combined with the reference potential (RP) strategy to predict the solvation free energies in the present study. It is found that the thermodynamic perturbation (TP) corrections utilizing total energy difference and interaction energy difference are almost the same and free of bias. The solvation free energies estimated by the RP method match very well with those obtained by applying IPolQ-Mod charges into MD simulation directly. By means of the RP strategy, the performances of the IPolQ-Mod charges with the change of the strength of the exact HF exchange in several DFT functionals are determined effectively. Although the “optimal” strengths are found in B3LYP and LC-ωPBE, the improvements over the default strength are not too much. In addition to the IPolQ-Mod charges, other charge models like bond charge correction (BCC) charges could also be combined with the RP strategy to study the thermodynamic properties like solvation free energy. © 2019 Wiley Periodicals, Inc.  相似文献   

16.
Molecular dynamics simulations have been used to investigate the ternary complex formed between chicken liver dihydrofolate reductase, a phenyl triazine inhibitor, and reduced nicotinamide adenine dinucleotide phosphate (NADPH). The solvent was represented by a sphere of water molecules encompassing the system. We report the results of quantum mechanical calculations of the rotational barrier in the pyrophosphate link and the barrier to inversion of the triazine ring. AMBER parameters for NADPH and the triazine are provided. Over the course of a 300-ps molecular dynamics simulation of the ternary complex in water, the triazine inhibitor maintains the same hydrogen bonding and hydrophobic interactions with the enzyme that are observed in the X-ray crystal structure. Despite the low calculated barrier to inversion of the triazine ring, a single puckered conformation is observed throughout the simulation. It is proposed that this is primarily due to interactions with Phe34, which maintains an approximately parallel orientation to the triazine ring. The nicotinamide portion of NADPH maintains the interactions observed in the crystal structure, but more conformational change is observed at the adenine end together with associated changes in the protein. Two conformations for the sidechain of Tyr31 are present in the X-ray structure. The main simulation reported here corresponds to the conformation characterized by (χ1 = ? 161°, χ2 = ? 103°). A separate simulation was also performed in which the sidechain of Tyr31 was initially set to the other conformation present in the crystal structure (χ1 = 139°, χ2 = ?99°). During this simulation, χ1 of this sidechain gradually changed until it occupied the region characterized by χ1 = ?160°, thereby suggesting that this is the preferred conformation for this residue. The simulation required 200 ps to reach structural equilibrium (as measured by the root mean square, rms, deviation from the initial crystal structure), thus reinforcing the view that simulations of at least several hundreds of picoseconds are desirable when studying such systems. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
We present here the results of all-atom and united-atom molecular dynamics (MD) simulations that were used to examine the folding behavior of an amine-functionalized m-poly(phenyleneethynylene) (m-PPE) oligomer in aqueous environment. The parallelized GROMACS MD simulation code and OPLS force field were used for multiple MD simulations of m-PPE oligomers containing 24 phenyl rings in extended, coiled and helix conformations separately in water to determine the minimum energy conformation of the oligomer in aqueous solvent and what interactions are most important in determining this structure. Simulation results showed that the helix is the preferred minimum energy conformation of a single oligomer in water and that Lennard-Jones interactions are the dominant forces for the stabilization of the helix. In addition, these solvophobic interactions are strong enough to maintain the helix conformation at temperatures up to 523 K.  相似文献   

18.
Aqueous solvation of benzene dicarboxylate dianions (BCD(2-)) was studied by means of photoelectron spectroscopy and molecular dynamics simulations. Photoelectron spectra of hydrated o- and p-BCD(2-) with up to 25 water molecules were obtained. An even-odd effect was observed for the p-BCD(2-) system as a result of the alternate solvation of the two negative charges. However, the high polarizability of the benzene ring makes the two carboxylate groups interact with each other in p-BCD(2-), suppressing the strength of this even-odd effect compared with the linear dicarboxylate dianions linked by an aliphatic chain. No even-odd effect was observed for the o-BCD(2-) system, because each solvent molecule can interact with the two carboxylate groups at the same time due to their proximity. For large solvated clusters, the spectral features of the solute decreased while the solvent features became dominant, suggesting that both o- and p-BCD(2-) are situated in the center of the solvated clusters. Molecular dynamics simulations with both nonpolarizable and polarizable force fields confirmed that all three isomers (o-, m-, and p-BCD(2-)) solvate in the aqueous bulk. However, upon methylation the hydrophobic forces overwhelm electrostatic interactions and, as a result, the calculations predict that the tetramethyl-o-BCD(2-) is located at the water surface with the carboxylate groups anchored in the liquid and the methylated benzene ring tilted away from the aqueous phase.  相似文献   

19.
Three NMR structures of alpha-conotoxin MI, a potent antagonist of the nicotinic acetylcholine receptor, have been refined using molecular dynamics (MD) simulation with explicit water. Although the convergence of the NMR structures of alpha-conotoxin MI was not sufficient to provide detailed structural features, the average structures obtained from MD simulations converged to one conformation, providing structural characteristics. The resulting structure was also found to be consistent with the results of amide proton-exchange experiments. These results demonstrate that MD simulation with explicit solvent water is very useful in refining NMR structures.  相似文献   

20.
We present a simple and practical method to include ligand electronic polarization in molecular dynamics (MD) simulation of biomolecular systems. The method involves periodically spawning quantum mechanical (QM) electrostatic potential (ESP) calculations on an extra set of computer processors using molecular coordinate snapshots from a running parallel MD simulation. The QM ESPs are evaluated for the small-molecule ligand in the presence of the electric field induced by the protein, solvent, and ion charges within the MD snapshot. Partial charges on ligand atom centers are fit through the multi-conformer restrained electrostatic potential (RESP) fit method on several successive ESPs. The RESP method was selected since it produces charges consistent with the AMBER/GAFF force-field used in the simulations. The updated charges are introduced back into the running simulation when the next snapshot is saved. The result is a simulation whose ligand partial charges continuously respond in real-time to the short-term mean electrostatic field of the evolving environment without incurring additional wall-clock time. We show that (1) by incorporating the cost of polarization back into the potential energy of the MD simulation, the algorithm conserves energy when run in the microcanonical ensemble and (2) the mean solvation free energies for 15 neutral amino acid side chains calculated with the quantum polarized fluctuating charge method and thermodynamic integration agree better with experiment relative to the Amber fixed charge force-field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号