首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 574 毫秒
1.
Investigation of the chemical constituents in the stem of Upuna borneensis (Dipterocarpaceae) resulted in the isolation of three new resveratrol derivatives, upunaphenols L (1), M (2) (resveratrol tetramers with a C(6)-C(3) unit) and N (3) (resveratrol tetramer with a C(1) unit). The structures have the same partial structure as vaticanol B (4). Upunaphenols L and M are new complex polyphenol compounds, lignostilbene. Their structures were determined by spectroscopic analysis including two dimensional NMR. Upunaphenol M was found to be an artifact generated by silica gel catalyzed methanolysis of 1.  相似文献   

2.
A bis(pyridine-armed) acyclic Schiff base ligand L1 has been synthesised from 3,6-diformylpyridazine and two equivalents of 2-(2-aminoethyl)pyridine. Reduction of this ligand using NaBH(4) resulted in the formation of the amine analogue L2. Complexes of the form [M(2)L1(mu-X)]Y(2)ClO(4)[where: M = Cu(II), X = OH(-) and Y = ClO(4)(-) 1, Cl(-) 2, Br(-) 3 or I(-) 4; M = Co(II), X = OH(-) and Y = ClO(4)(-) 5; M = Ni(II), X = SCN(-) 6 or X = N(3)(-) 7 and Y = ClO(4)(-)], and [Cu(2)L2(mu-OH)](ClO(4))(3) 8 were prepared and characterised. The complexes 1 and 5-7 have been characterised by single-crystal X-ray diffraction. The acyclic L1 ligand provides three nitrogen donor atoms per metal centre, including a pyridazine bridge between the metal centres, and the anion X also bridges the two metal centres. As required, coordinating solvent molecules or additional anions make up the remainder of the coordination sphere. The two copper centres of 1 are very strongly antiferromagnetically coupled (2J=-1146 cm(-1))via the pyridazine and hydroxide ion bridges, whereas the competing antiferromagnetic pyridazine bridging pathway and ferromagnetic 1,1-bridging azide pathway resulted in the observation of weak antiferromagnetic exchange in the dinickel(II) complex 7 (2J=-14 cm(-1)). Electrochemical examination of L1, L2 and complexes 1 and 5-8 revealed multiple redox processes. These have been tentatively assigned to a mixture of metal centred and ligand centred redox processes on the basis of cyclic voltammetry and coulometry results and comparisons with literature examples.  相似文献   

3.
The transition metal (M=Fe, Co, Ni, Cu, Zn, Cd and Hg) complexes of 2- acetylbenzimidazolethiosemicarbazone (L(1)) and 1-methyl 2-acetylbenzimidazole-thiosemicarbazone (L(2)) are analyzed by MALDI using HCCA, THP, MMNPD and DMN as the matrices. All the MALDI spectra are clean without any contribution from the complex ions resulted by multiple proton addition/removal. All the complexes, except Cu, irrespective of the matrix used, show 1:2 complex ions wherein two ligands (neutral or deprotonated) complex with the metal ion depending on the nature and stable oxidation state of the central metal ion viz., [M + 2L - 2H](+) ion for Fe and Co complexes (+3 oxidation state) and [M + 2L - H](+) ion for Ni, Zn, Cd and Hg (+2 oxidation state). The Cu complex show 1:1 complex ion corresponding to [2M + 2L - 2H](+) ions. When HCCA is used as a matrix, the complex ions due to ligand exchange by matrix are also found, and this process is relatively more if a neutral ligand is bound to the metal ion in the original complex ion. The type of complex ions found under MALDI experiments are similar to those found under ESI experiments. However, the complex ions due to reduction of Cu are found only in the MALDI analysis of Cu complexes.  相似文献   

4.
Template condensation of 3,5-di-tert-butyl-2-hydroxybenzaldehyde S-methylisothiosemicarbazone with pentane-2,4-dione and triethyl orthoformate at elevated temperatures resulted in metal complexes of the type M(II)L, where M = Ni and Cu and H(2)L = a novel tetradentate ligand. These complexes are relevant to the active site of the copper enzymes galactose oxidase and glyoxal oxidase. Demetalation of Ni(II)L with gaseous hydrogen chloride in chloroform afforded the metal-free ligand H(2)L. Then by the reaction of H(2)L with Zn(CH(3)COO)(2)·2H(2)O in a 1:1 molar ratio in 1:2 chloroform/methanol, the complex Zn(II)L(CH(3)OH) was prepared. The three metal complexes and the prepared ligand were characterized by spectroscopic methods (IR, UV-vis, and NMR spectroscopy), X-ray crystallography, and DFT calculations. Electrochemically generated one-electron oxidized metal complexes [NiL](+), [CuL](+), and [ZnL(CH(3)OH)](+) and the metal-free ligand cation radical [H(2)L](+?) were studied by EPR/UV-vis-NIR and DFT calculations. These studies demonstrated the interaction between the metal ion and the phenoxyl radical.  相似文献   

5.
Directed evolution was applied to identify peptide substrates with enhanced hydrolysis rates by MT1-MMP suitable for protease beacon development. Screening of a random pentapeptide library, using two-color CLiPS, yielded several substrates identical to motifs in distinct collagens that shared the consensus sequence P-x-G↓L. To identify substrates with enhanced cleavage rates, a second-generation decapeptide library incorporating the consensus was screened under stringent conditions, which resulted in a MxPLG↓(M)/(L)M(G)/(A)R consensus motif. These substrates are hydrolyzed by human-MT1-MMP up to six times faster than reported peptide substrates and are stable in plasma. Finally, incubation of soluble protease beacons incorporating the optimized substrates, but not previous substrates, enabled direct detection of endogenous MT1-MMP activity of human-fibrosarcoma (HT-1080) cells. Extended substrate libraries coupled with CLiPS should be useful to generate more effective activity probes for a variety of proteolytic enzymes.  相似文献   

6.
Silicon(II) fluoride is unstable; therefore, isolation of the stable species is highly challenging and was not successful during the last 45 years. SiF(2) is generally generated in the gas phase at very high temperatures (~1100-1200 °C) and low pressures and readily disproportionates or polymerizes. We accomplished the syntheses of stable silicon(II) fluoride species by coordination of silicon(II) to transition metal carbonyls. Silicon(II) fluoride compounds L(F)Si·M(CO)(5) {M = Cr (4), Mo (5), W(6)} (L = PhC(NtBu)(2)) were prepared by metathesis reaction from the corresponding chloride with Me(3)SnF. However, the chloride derivatives L(Cl)Si·M(CO)(5) {M = Cr (1), Mo (2), W(3)} (L = PhC(NtBu)(2)) were prepared by the treatment of transition metal carbonyls with L(Cl)Si. Direct fluorination of L(Cl)Si with Me(3)SnF resulted in oxidative addition products. Compounds 4-6 are stable at ambient temperature under an inert atmosphere of nitrogen. Compounds 4-6 were characterized by NMR spectroscopy, EI-MS spectrometry, and elemental analysis. The molecular structures of 4 and 6 were unambiguously established by single-crystal X-ray diffraction. Compounds 4 and 6 are the first structurally characterized fluorides, after the discovery of SiF(2) about four and a half decades ago.  相似文献   

7.
A novel, soluble terephthalamide‐bridged ladderlike polysiloxane ( L ) was synthesized successfully for the first time by stepwise coupling polymerization. The process involved the hydrogen‐bonding self‐assembly of amido groups, which resulted in the formation of a more highly ordered polymeric structure. A novel monomer, bis(3‐methyldimethoxysilylpropyl) terephthalamide ( M ), was prepared by a hydrosilylation reaction in the presence of dicyclopentadienyl platinum dichloride as a catalyst. The structures of the monomer ( M ) and the polymer ( L ) were characterized by Fourier transform infrared, 1H NMR, 13C NMR, 29Si NMR, mass spectrometry, X‐ray diffraction, differential scanning calorimetry, and vapor pressure osmometry. All the characterization data indicated that the synthesized polymer ( L ) possessed an ordered ladderlike structure. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3161–3170, 2002  相似文献   

8.
One pair of reactants, Cu(hfac)(2) = M and the hinge-flexible radical ligand 5-(3-N-tert-butyl-N-aminoxylphenyl)pyrimidine (3PPN = L), yields a diverse set of five coordination complexes: a cyclic loop M(2)L(2) dimer; a 1:1 cocrystal between an M(2)L(2) loop and an ML(2) fragment; a 1D chain of M(2)L(2) loops linked by M; two 2D M(3)L(2) networks of (M-L)(n) chains cross-linked by M with different repeat length pitches; a 3D M(3)L(2) network of M(2)L(2) loops cross-linking (M-L)(n)-type chains with connectivity different from those in the 2D networks. Most of the higher dimensional complexes exhibit reversible, temperature-dependent spin-state conversion of high-temperature paramagnetic states to lower magnetic moment states having antiferromagnetic exchange within Cu-ON bonds upon cooling, with accompanying bond contraction. The 3D complex also exhibited antiferromagnetic exchange between Cu(II) ions linked in chains through pyrimidine rings.  相似文献   

9.
New polynuclear complexes, (L1)3M2 [M2 = Cr(III) (4a,4b), Fe(III) (5), Co(III) (8)], (L1)2M2(L2)2 [M2 = Co(II) (7), Ni(II) (9)], (L1)2M2(O)L2 [M2 = V(IV) (6)] and L1M2Cp2 [M2 = Ti(III) (10)] with L1 = (CO)5M1=C[C=NC(CH3)=CHS](O-)(M1 = Cr or W) and L2 = 4-methylthiazole or THF, are described. The molecular structures of these complexes determined by X-ray diffraction show that the Fischer-type carbene complexes act as bidentate ligands towards the second metal centre, coordinating through C(carbene)-attached O-atoms and imine N-atoms of the thiazolyl groups to form five-membered chelates with the oxygen atoms in the mer configuration. Isostructural complexes have similar characteristic band patterns in their far-IR spectra. Cyclic voltammetry of selected complexes reveals the oxidation of the carbene complex ligand between 1.01 and 1.29 V. Oxidation of the central metal (M2) takes place at 0.56 and 0.86 V for 7 and 9, respectively. Three stepwise reductions of Cr(III) to Cr(0) occur for 4a and 4b in the region -0.51 to -1.58 V. These new ligand types and other variants thereof should find application in ligand design with the first metal -- and other ligands attached thereto -- in the carbene complex ligand, playing an important role.  相似文献   

10.
Herein we report on the reactions of the stable LSiCl (1) and LGeCl (2) [L = PhC(NtBu)(2)] with L(1)Ge, [L(1) = CH{(C[double bond, length as m-dash]CH(2))(CMe)(2,6-iPr(2)C(6)H(3)N)(2)}] (3) to yield 1-sila-5-germylene (4) and a 1,5-bis(germylene) (5). The reactions proceed through the 1,4 nucleophilic addition of the M-Cl (M = Si or Ge) to 3 without any modification of the oxidation state although the change of the oxidation state is thermodynamically more favorable. Compounds 4 and 5 were investigated by single crystal X-ray structural analyses, multi-nuclear NMR spectroscopy, and micro-analysis. Treatment of L(1)AlMe·thf (6) with 1 resulted in the formation of the 1-sila-5-aluminium complex (7). The complex contains a Si(II) and an Al(III) atom in the molecule. All reported reactions proceed without changing the oxidation states at the metal centers.  相似文献   

11.
Zero-valent iron (ZVI)- and zero-valent aluminium (ZVA)-activated persulfate (PS) oxidation procedure was applied to remove the industrial pollutants 3,5-dichlorophenol (3,5-DCP; 12.27 µM) and 2,4-dichloroaniline (2,4-DCA; 12.34 µM) from aqueous solutions. The effects of PS concentration and pH were investigated to optimize heterogeneous treatment systems. Negligible removals were obtained for both pollutants by individual applications of nanoparticles (1 g/L) and PS (1.00 mM). PS activation with ZVI resulted in 59% (1.00 mM PS; 1 g/L ZVI; pH 5.0; 120 min) and 100% (0.75 mM PS; 1 g/L ZVI; pH 5.0; 80 min) 3,5-DCP and 2,4-DCA removals, respectively. The ZVA/PS treatment system gave rise to only 31% 3,5-DCP (1.00 mM PS; 1 g/L ZVA; pH 3.0; 120 min) and 47% 2,4-DCA (0.25 mM PS; 1 g/L ZVA; pH 3.0; 120 min) removals. The pH decreases from 5.0 to 3.0 and from 3.0 to 1.5 enhanced contaminant removals for ZVI/PS and ZVA/PS treatments, respectively. Pollutant removal rates were in correlation with the consumption rates of the oxidants. Metal ion (Al, Fe) release increased in the presence of PS and with decreasing pH.  相似文献   

12.
Octanuclear complexes with half-sandwich Ir, Rh and Ru fragments and tetra(4-pyridyl)porphyrin (L1) and oxalate (L2) spacer ligands [(Cp*M)4L1]2[L2]4 (M = Ir (6a) M = Rh (6b)), [((cymene)Ru)4(L1)]2[L2]4 were prepared and characterized.  相似文献   

13.
A series of metal-centered ferrocene compounds has been designed by using 5-ferrocenylpyrimidine (L1) and ferrocenylpyrazine (L2). These ligands, when combined with transition metal salts, produce mixed-metal polynuclear complexes with structural diversity. Reaction of L1 with M(SCN)(2) (M = Ni, Co) produces the pinwheel-like 4:1 complexes (L1)(4).M(SCN)(2), while reactions of L1 and L2 with Cu(NO(3))(2) give the 3:1 complex (L1)(3).Cu(NO(3))(2) and the 2:1 complex (L2)(2).Cu(NO(3))(2), respectively. Reactions of L1 and L2 with M(hfac)(2) (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonate, M = Mn, Ni, Cu, Zn) produce 2:1 complexes (L)(2).M(hfac)(2) with cis and trans configurations, respectively. Crystal structures as well as solid-state electrochemical properties of these redox active complexes were investigated.  相似文献   

14.
The nominally square-planar coordination of the d(8) complexes [MClL(1)L(2)(p-XC(6)H(4)NNNHC(6)H(4)X-p)](M = Rh, L(1)= L(2)= CO, X = H, Me, Et or F; M = Ir, L(1)= L(2)= CO, X = Me; M = Pd or Pt, L(1)= Cl, L(2)= PPh(3), X = Me; M = Pd, L(1)L(2)=eta(3)-C(3)H(5), X = Me), with the triazene N-bonded via the imine group, is supplemented by an axial M...H-N interaction involving the terminal amino group.  相似文献   

15.
Three hexadentate, asymmetric pendent arm macrocycles containing a 1,4,7-triazacyclononane-1,4-diacetate backbone and a third, N-bound phenolate or thiophenolate arm have been synthesized. In [L(1)](3)(-) the third arm is 3,5-di-tert-butyl-2-hydroxybenzyl, in [L(2)](3)(-) it is 2-mercaptobenzyl, and in [L(3)](3)(-) it is 3,5-di-tert-butyl-2-mercaptobenzyl. With trivalent metal ions these ligands form very stable neutral mononuclear complexes [M(III)L(1)] (M = Ga, Fe, Co), [M(III)L(2)] (M = Ga, Fe, Co), and [M(III)L(3)] (M = Ga, Co) where the gallium and cobalt complexes possess an S = 0 and the iron complexes an S = (5)/(2) ground state. Complexes [CoL(1)].CH(3)OH.1.5H(2)O, [CoL(3)].1.17H(2)O, [FeL(1)].H(2)O, and [FeL(2)] have been characterized by X-ray crystallography. Cyclic voltammetry shows that all three [M(III)L(1)] complexes undergo a reversible, ligand-based, one-electron oxidation generating the monocations [M(III)L(1)(*)](+) which contain a coordinated phenoxyl radical as was unambiguously established by their electronic absorption, EPR, and M?ssbauer spectra. In contrast, [M(III)L(2)] complexes in CH(3)CN solution undergo an irreversible one-electron oxidation where the putative thiyl radical monocationic intermediates dimerize with S-S bond formation yielding dinuclear disulfide species [M(III)L(2)-L(2)M(III)](2+). [GaL(3)] behaves similarly despite the steric bulk of two tertiary butyl groups at the 3,5-positions of the thiophenolate, but [Co(III)L(3)] in CH(2)Cl(2) at -20 to -61 degrees C displays a reversible one-electron oxidation yielding a relatively stable monocation [Co(III)L(3)(*)](+). Its electronic spectrum displays intense transitions in the visible at 509 nm (epsilon = 2.6 x 10(3) M(-)(1) cm(-)(1)) and 670sh, 784 (1.03 x 10(3)) typical of a phenylthiyl radical. The EPR spectrum of this species at 90 K proves the thiyl radical to be coordinated to a diamagnetic cobalt(III) ion (g(iso) = 2.0226; A(iso)((59)Co) = 10.7 G).  相似文献   

16.
Interaction of a Schiff base, bis-(salicylaldehyde)-1,3-propylenediimine, salpenH2, with M(CO)6 (M?=?Cr or Mo) in the presence of oxygen gave the oxo-complexes[M(O)(salpen)]. Magnetic studies for the two oxo-complexes showed chromium and molybdenum in the +4 formal oxidation state. In presence of pyridine, reaction of Cr(CO)6 with salpenH2 gave the identical product; [Cr(O)(salpen)]. Reaction of Mo(CO)6 with salpenH2 in presence of pyridine (py) resulted in formation of the square-pyramidal complex [Mo(py)(salpenH2)]. Reactions of M(CO)6 with salpenH2 in presence of a ligand L (L?=?bipyridine (bpy) or 3,3-dimethylbipyridine (dmbpy)) gave the octahedral complexes [M(L)(salpenH2)]. All the complexes were characterized by elemental analyses, IR, mass and 1H NMR spectroscopy. The spectroscopic studies revealed the proposed structures. UV-Vis spectra of the ligand and its complexes in DMSO exhibited visible bands due to metal-to-ligand or ligand-to-metal charge transfer.  相似文献   

17.
Two series of square planar, diamagnetic, neutral complexes of nickel(II), palladium(II), and platinum(II) containing two N,N-coordinated o-diiminobenzosemiquinonate(1-) pi radical ligands have been synthesized and characterized by UV-vis and (1)H NMR spectroscopy: [M(II)((2)L(ISQ))(2)], M = Ni (1), Pd (2), Pt (3), and [M(II)((3)L(ISQ))(2)] M = Ni (4), Pd (5), Pt (6). H(2)[(2)L(PDI)] represents 3,5-di-tert-butyl-o-phenylenediamine and H(2)[(3)L(PDI)] is N-phenyl-o-phenylenediamine; (L(ISQ))(1-) is the o-diiminobenzosemiquinonate pi radical anion, and (L(IBQ))(0) is the o-diiminobenzoquinone form of these ligands. The structures of complexes 1, 4, 5, and 6 have been (re)determined by X-ray crystallography at 100 K. Cyclic voltammetry established that the complete electron-transfer series consisting of a dianion, monoanion, neutral complex, a mono- and a dication exists: [M(L)(2)](z)z = -2, -1, 0, 1+, 2+. Each species has been electrochemically generated in solution and their X-band EPR and UV-vis spectra have been recorded. The oxidations and reductions are invariably ligand centered. Two o-diiminobenzoquinones(0) and two fully reduced o-diiminocatecholate(2-) ligands are present in the dication and dianion, respectively, whereas the monocations and monoanions are delocalized mixed valent class III species [M(II)(L(ISQ))(L(IBQ))](+) and [M(II)(L(ISQ))(L(PDI))](-), respectively. One-electron oxidations of 1 and trans-6 yield the diamagnetic dications [cis-[Ni(II)((2)L(ISQ))((2)L(IBQ))](2)]Cl(2) (7) and [trans-[Pt(II)((3)L(ISQ))((3)L(IBQ))](2)](CF(3)SO(3))(2) (8), respectively, which have been characterized by X-ray crystallography; both complexes possess a weak M.M bond and the ligands adopt an eclipsed configuration due to weak bonding interactions via pi stacking.  相似文献   

18.
Reaction of a tris-bidentate ligand L(1) (which can cap one triangular face of a metal polyhedron), a bis-bidentate ligand L(2) (which can span one edge of a metal polyhedron), and a range of M(2+) ions (M = Co, Cu, Cd), which all have a preference for six coordination geometry, results in assembly of the mixed-ligand polyhedral cages [M12(mu(3)-L(1))4(mu-L(2))12](24+). When the components are combined in the correct proportions [M(2+):L(1):L(2) = 3:1:3] in MeNO2, this is the sole product. The array of 12 M(2+) cations has a cuboctahedral geometry, containing six square and eight triangular faces around a substantial central cavity; four of the eight M3 triangular faces (every alternate one) are capped by a ligand L(1), with the remaining four M3 faces having a bridging ligand L(2) along each edge in a cyclic helical array. Thus, four homochiral triangular {M3(L(2))3}(6+) helical units are connected by four additional L(1) ligands to give the mixed-ligand cuboctahedral array, a topology which could not be formed in any homoleptic complex of this type but requires the cooperation of two different types of ligand. The complex [Cd3(L(2))3(ClO4)4(MeCN)2(H2O)2](ClO4)2, a trinuclear triple helicate in which two sites at each Cd(II) are occupied by monodentate ligands (solvent or counterions), was also characterized and constitutes an incomplete fragment of the dodecanuclear cage comprising one triangular {M3(L(2))3}(6+) face which has not yet reacted with the ligands L(1). (1)H NMR and electrospray mass spectrometric studies show that the dodecanuclear cages remain intact in solution; the NMR studies show that the Cd 12 cage has four-fold (D2) symmetry, such that there are three independent Cd(II) environments, as confirmed by a (113)Cd NMR spectrum. These mixed-ligand cuboctahedral complexes reveal the potential of using combinations of face-capping and edge-bridging ligands to extend the range of accessible topologies of polyhedral coordination cages.  相似文献   

19.
20.
Two new bulky aryl-bridged pyridyl-imine compartmental (pro)ligands, 2,6-{(2,6-i-Pr(2)C6H3)N=C(Me)C5H3N}2C6H3Y (Y = H L1, OH L2-H), have been prepared in moderate to good overall yields via a Stille-type cross-coupling approach. The molecular structure of L2-H reveals a transoid configuration within the pyridyl-imine units with a hydrogen-bonding interaction maintaining the phenol coplanar with one of the adjacent pyridine rings. The interaction of 2 equiv of MX2 with L1 in n-BuOH at 110 degrees C gives the binuclear complexes, [(L1)M2X4] (M = Fe, X = Cl (1a); M = Co, X = Cl (1b); M = Ni, X = Br (1c); M = Zn, X = Cl (1d)), in which the metal centers adopt distorted tetrahedral geometries and occupy the two pyridyl-imine cavities in L1. In contrast, deprotonation of L2-H occurs upon reaction with 2 equiv of MX2 to afford the phenolate-bridged species [(L2)M2(mu-X)X2] (M = Fe, X = Cl (2a); M = Co, X = Cl (2b); M = Ni, X = Br (2c); M = Zn, X = Cl (2d)). 1H NMR studies of diamagnetic 1d and 2d reveal that the limited rotation of the N-aryl groups in 1d is further impeded in 2d by steric interactions imparted by the two closely located N-aryl groups. Partial displacement of the bridging bromide in 2c results upon its treatment with acetonitrile to afford [(L2)Ni2Br3(NCMe)] [2c(MeCN)]; no such reaction occurs for 2a, 2b, or 2d. Upon activation with excess methylalumoxane (MAO), 1b, 1c, 2b, and 2c show some activity for alkene oligomerization forming low molecular-weight materials with methyl-branched products predominating for the nickel systems. Single-crystal X-ray diffraction studies have been performed on L2-H, 1c, 2b, 2c, 2c(NCMe), and 2d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号