首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Adaptive synchronization of a hyperchaotic system with uncertain parameter   总被引:1,自引:0,他引:1  
This paper addresses the synchronization problem of two Lü hyperchaotic dynamical systems in the presence of unknown system parameters. Based on Lyapunov stability theory an adaptive control law is derived to make the states of two identical Lü hyperchaotic systems with unknown system parameters asymptotically synchronized. Numerical simulations are presented to show the effectiveness of the proposed chaos synchronization schemes.  相似文献   

2.
This paper is involved with the adaptive modified function projective synchronization (MFPS) problem of hyperchaotic systems with unknown parameters. Based on the Lyapunov stability theorem and adaptive control method, adaptive controllers and parameters update laws can be presented for the MFPS not only between two identical hyperchaotic systems but particularly also between two different hyperchaotic systems with fully unknown or partially unknown parameters. Moreover, the coupling strength can be automatically adapted to a updated law. Numerical simulations are presented to show the effectiveness of the proposed synchronization schemes.  相似文献   

3.
This work presents chaos synchronization between two different hyperchaotic systems using adaptive control. The sufficient conditions for achieving synchronization of two high dimensional chaotic systems are derived based on Lyapunov stability theory, and an adaptive control law and a parameter update rule for unknown parameters are given such that generalized Henon–Heiles system is controlled to be hyperchaotic Chen system. Theoretical analysis and numerical simulations are shown to verify the results.  相似文献   

4.
To date, there have been many results about unidirectionally coupled synchronization of chaotic systems. However, much less work is reported on bidirectionally-coupled synchronization. In this paper, we investigate the synchronization of two bidirectionally coupled Chen hyperchaotic systems, which are coupled linearly and nonlinearly respectively. Firstly, linearly coupled synchronization of two hyperchaotic Chen systems is investigated, and a theorem on how to choose the coupling coefficients are developed to guarantee the global asymptotical synchronization of two coupled hyperchaotic systems. Analysis shows that the choice of the coupling coefficients relies on the bound of the chaotic system. Secondly, the nonlinearly coupled synchronization is studied; a sufficient condition for the locally asymptotical synchronization is derived, which is independent of the bound of the hyperchaotic system. Finally, numerical simulations are included to verify the effectiveness and feasibility of the developed theorems.  相似文献   

5.
This paper proposes two schemes of synchronization of two four-scorll chaotic attractor, a simple global synchronization and adaptive synchronization in the presence of unknown system parameters. Based on Lyapunov stability theory and matrix measure, a simple generic criterion is derived for global synchronization of four-scorll chaotic attractor system with a unidirectional linear error feedback coupling. This methods are applicable to a large class of chaotic systems where only a few algebraic inequalities are involved. Numerical simulations are presented to show the effectiveness of the proposed chaos synchronization method.  相似文献   

6.
This work presents hyperchaos synchronization of two identical hyperchaotic Lü systems. In this study three methods are applied to achieve hyperchaos synchronization. The sufficient conditions for achieving synchronization of two identical hyperchaotic Lü systems are derived by using Lyapunov stability theory. Numerical simulations are presented to demonstrate the effectiveness of the proposed hyperchaos synchronization schemes.  相似文献   

7.
This letter presents chaos synchronization problem of two different hyperchaotic systems when the parameters of drive and response systems are fully unknown or uncertain. Based on Lyapunov stability theory, an adaptive control law and a parameter update rule for unknown parameters are derived such that two different high dimensional chaotic systems are to be synchronized. Hyperchaotic Chen system and Second-harmonic generation (SHG) system are taken as an illustrative example to show the effectiveness of the proposed method.  相似文献   

8.
In this paper, synchronization of two hyperchaotic oscillators via a single variable’s unidirectional coupling is studied. First, the synchronizability of the coupled hyperchaotic oscillators is proved mathematically. Then, the convergence speed of this synchronization scheme is analyzed. In order to speed up the response with a relatively large coupling strength, two kinds of chaotic coupling synchronization schemes are proposed. In terms of numerical simulations and the numerical calculation of the largest conditional Lyapunov exponent, it is shown that in a given range of coupling strengths, chaotic-coupling synchronization is quicker than the typical continuous-coupling synchronization. Furthermore, A circuit realization based on the chaotic synchronization scheme is designed and Pspice circuit simulation validates the simulated hyperchaos synchronization mechanism.  相似文献   

9.
This paper is concerned with the synchronization problem for a class of hyperchaotic chaotic systems. Using sliding mode control approach and backstepping control, a robust control scheme is proposed to make most of the synchronization errors of the systems to zero for matched and unmatched uncertainties. And only one of the synchronization errors of the systems may not be zero, but it is bounded. Meanwhile, the chattering phenomenon is eliminated. The proposed methods can be applied to a variety of chaos systems which can be described by the so-called cross-strict feedback form. Numerical simulations are given to demonstrate the efficiency of the proposed control schemes.  相似文献   

10.
In this article, we investigate globally exponentially attractive sets and chaos synchronization for a hyperchaotic system, namely, Lorenz–Stenflo system. For this system, two ellipsoidal globally exponentially attractive sets are derived based on generalized Lyapunov function theory and the extremum principle of function. Furthermore, we propose linear feedback control with a one, two, three, and four inputs to realize globally exponential synchronization of two four‐dimesional hyperchaotic systems using inequality techniques. Numerical simulations are presented to show the effectiveness of the proposed synchronization scheme. © 2014 Wiley Periodicals, Inc. Complexity 20: 30–44, 2015  相似文献   

11.
In this paper, two kinds of synchronization schemes for a new hyperchaotic system are presented. Firstly, on the basis of stability criterion of linear system, synchronization is achieved with the help of the active control theory. Secondly, a nonlinear controller is designed according to Lyapunov stability theory to assure that synchronization can be achieved. Furthermore, an adaptive control approach for synchronization of uncertain hyperchaotic systems is proposed. Finally numerical simulations are provided to show the effectiveness and feasibility of the developed methods.  相似文献   

12.
In this paper, dynamics of the fractional-order simplied Lorenz hyperchaotic system is investigated. Modied Adams-Bashforth-Moulton method is applied for numerical simulation. Chaotic regions and periodic windows are identied. Dierent types of motions are shown along the routes to chaos by means of phase portraits, bifurcation diagrams, and the largest Lyapunov exponent. The lowest fractional order to generate chaos is 3.8584. Synchronization between two fractional-order simplied Lorenz hyperchaotic systems is achieved by using active control method. The synchronization performances are studied by changing the fractional order, eigenvalues and eigenvalue standard deviation of the error system.  相似文献   

13.
Base on the stability theory of fractional order system, this work mainly investigates modified projective synchronization of two fractional order hyperchaotic systems with unknown parameters. A controller is designed for synchronization of two different fractional order hyperchaotic systems. The method is successfully applied to modified projective synchronization between fractional order Rössler hyperchaotic system and fractional order Chen hyperchaotic system, and numerical simulations illustrate the effectiveness of the obtained results.  相似文献   

14.
Based on the Lyapunov stabilization theory and matrix measure, this paper proposes some simple generic criterions of global chaos synchronization between two coupled time-varying chaotic systems from a unidirectional linear error feedback coupling approach. These simple criterions are applicable to some typical chaotic systems with different types of nonlinearity, such as the original Chua’s circuit and the Rössler chaotic system. The coupling parameters are determined according to the new criterion so as to ensure the coupled systems’ global chaos synchronization.  相似文献   

15.
Chaos synchronization, as an important topic, has become an active research subject in nonlinear science. Over the past two decades, chaos synchronization between nonlinear systems has been extensively studied, and many types of synchronization have been announced. This paper introduces another novel type of chaos synchronization – full state hybrid projective synchronization (FSHPS), which includes complete synchronization, anti-synchronization and projective synchronization as its special item. Based on the Lyapunov’s direct method, the general FSHPS scheme is given and illustrated with Lorenz chaotic system and hyperchaotic Chen system as examples. Numerical simulations are used to verify the effectiveness of the proposed scheme.  相似文献   

16.
This work is devoted to investigating the synchronization between two novel different hyperchaotic systems with fully unknown parameters, i.e., an uncertain hyperchaotic Lorenz system and an uncertain hyperchaotic Lü system. Based on the Lyapunov stability theory, a new adaptive controller with parameter update law is designed to synchronize these two hyperchaotic systems asymptotically and globally. Numerical simulations are presented to verify the effectiveness of the synchronization scheme.  相似文献   

17.
This paper investigates adaptive synchronization between two novel different hyperchaotic systems with partly uncertain parameters. Based on the Lyapunov stability theorem and the adaptive control theory, synchronization between these two hyperchaotic systems is achieved by proposing a new adaptive controller and a parameter estimation update law. Numerical simulations are presented to demonstrate the analytical results.  相似文献   

18.
Based on the Lyapunov stability and adaptive synchronization theory, optimization design of adaptive controllers and parameter observers with controllable gain coefficient are investigated in detail. The linear errors of corresponding variables and parameters are used to construct different appropriate positive Lyapunov functions V and the parameter observers and adaptive controllers are approached analytically by simplifying the differential inequality dV/dt?0. Particularly, an optional gain coefficient is selected in the parameter observers and positive Lyapunov function, which decides the transient period to identify the unknown parameters and reach synchronization. The scheme is used to study the synchronization of two non-identical hyperchaotic Rössler systems. The theoretical and numerical results confirm that the four unknown parameters in the drive system are estimated exactly and the two hyperchaotic systems reach complete synchronization when the controllers and parameter observers work on the driven system. To confirm the model independence of this scheme, an alternative hyperchaotic system is investigated, whereby the results confirm that the five unknown parameters are identified rapidly and exactly, and that the two hyperchaotic systems reach complete synchronization as well.  相似文献   

19.
We numerically investigate the properties of chaos synchronization in a master–slave configuration consisting of a master semiconductor ring laser (SRL) with self-feedback or cross-feedback and a solitary SRL (slave). Different coupling schemes related to global injection and mode-selective injection are proposed and explored in our simulations. The numerical results demonstrate that among the studied coupling motifs the synchronization performance between the modes of the two chaotic SRLs is better when global injection scheme is employed. Furthermore, enhanced chaos synchronization and communication in three cascade-coupled SRLs via global injection are reported, where the time delay signature cannot be identified from the outputs of the three SRLs due to the proper selection of cross-feedback parameters of the master SRL.  相似文献   

20.
Based on the Lyapunov stability theorem, a new type of chaos synchronization, general hybrid projective complete dislocated synchronization (GHPCDS), is proposed under the framework of drive-response systems. The difference between the GHPCDS and complete synchronization is that every state variable of drive system does not equal the corresponding state variable, but equal other ones of response system while evolving in time. The GHPCDS includes complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization as its special item. As examples, the Lorenz chaotic system, Rössler chaotic system, hyperchaotic Chen system and hyperchaotic Lü system are discussed. Numerical simulations are given to show the effectiveness of these methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号