首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An inorganic–organic hybrid constructed from a Zn-cluster with a polyoxometalate {[Zn3Na2(μ-OH)2(bpdo)6(H2O)16][PW12O40]2}·(bpdo)3·C2H5OH·2H2O (bpdo?=?4,4′-bis(pyridine-N-oxide)) (1) has been synthesized by hydrothermal reaction and characterized by elemental analyses, IR spectra, and single crystal X-ray diffraction. The structural analysis indicates that 1 is an S-like complex constructed by [Zn3Na2(μ-OH)2(bpdo)6(H2O)16]6? with two PW12O40 3? with water occupying several coordination sites and have the potential to act as labile ligands, allowing for substrate and nucleophile binding. Kinetic experiments for hydrolytic cleavage of the DNA-model phosphodiester bis(p-nitropheny1)phosphate (BNPP) were followed spectrophotometrically for absorbance increase at 400?nm in 4-(2-hydroxyethyl)piperazine-1–propane sulfonic acid (EPPS) buffer solution due to the formation of p-nitrophenoxide with 1 at pH 4.0 and 50?°C. UV spectroscopy indicates cleavage of the phosphodiester bond proceeds with pseudo-first-order rate constant 6.7(±0.2)?×?10?7?s?1, giving an inorganic phosphate and p-nitrophenol as the final products of hydrolysis. The results demonstrate that 1 exhibits good catalytic activity and reusability for hydrolytic cleavage of BNPP.  相似文献   

2.
Current micro review describes the recent progress in the energy-related MOF applications. The most outstanding research papers and reviews, which report the application of Metal-Organic Frameworks for gas storage, adsorption heat transformation, solar cells, fuel cells, hydrogen evolution reaction and supercapacitors are highlighted.  相似文献   

3.
4.
Abstract

Staphylococcal nuclease catalyses the hydrolysis of DNA phosphate linkages with a rate enhancement of the order of 1016. The active site possesses two guanidinium groups and a Ca2+, all of which are proposed to stabilize the formation of the phosphorane intermediate formed along the hydrolysis reaction pathway. In an attempt to achieve a fraction of the natural rate enhancement in aqueous media, several receptors possessing guanidinium groups preorganized and complementary to a phosphodiester have been synthesized. The guanidinium receptor designs were based upon analysis of multiple polyazaclefts used to study the binding of phosphodiesters in nonaqueous media. The spatial relationships of the hydrogen bonding groups with respect to each other are found to be crucial to the strength of binding, with spacers that hold the hydrogen bonding groups at a slightly greater distance than isophthaloyl spacers being optimum. The bis-guanidinium receptors do enhance the cleavage of RNA at low equivalents of the receptors to RNA phosphates. A quantitative assay to measure rates of RNA hydrolysis at 37 °C is briefly discussed.  相似文献   

5.
金属有机框架材料(metal organic frameworks, MOFs)是指由金属离子或金属团簇与有机配体形成的一类多孔材料,具有比表面积大、气孔率高和热稳定性能优良等特点,在能源、环境、生物医药等领域应用广泛. 质谱可有效测定各种金属元素的成分和含量,精准分析化合物的组成和结构,其灵敏度高、分析速度快,是表征MOFs的有效技术之一. 在质谱技术中,样品的离子化是进行质谱分析检测的重要前提,因此从常见离子源的原理与特点出发,对采用质谱技术表征MOFs的常用离子源种类、样品要求及产生的离子类型进行总结,并进一步对质谱在MOFs定性、反应监测及应用分析等方面的研究进展进行综述.  相似文献   

6.
Liu SS  Yang CX  Wang SW  Yan XP 《The Analyst》2012,137(4):816-818
Metal-organic framework MIL-53(Al) is explored for reverse-phase high-performance liquid chromatographic separation of a wide range of analytes from non-polar to polar, and acidic to basic solutes with high resolution, good selectivity, stability and reproducibility.  相似文献   

7.
高效氧催化反应中的金属有机骨架材料(英文)   总被引:1,自引:0,他引:1  
氧电催化反应包括氧气还原反应(ORR)和氧气析出反应(OER).作为核心电极反应,这两个反应对诸多能源存储与转换技术(比如燃料电池、金属空气电池以及全水分解制氢等)的能量效率起决定性作用.然而,ORR和OER涉及多个反应步骤、多个电子转移过程以及多相界面传质过程.这些复杂的过程较大程度上限制了ORR和OER的反应速率.从理论和实践两个方面来看,ORR和OER都需要高效电催化剂的参与来促进其反应速率,从而能够最终提高上述能源存储与转换技术的能量转换或利用效率.目前,以Pt,Pd,Ir,Ru为代表的贵金属基电催化剂具有十分突出的电催化性能.但是,过高的成本和过低的储量始终制约着贵金属基电催化剂在催化ORR和OER反应方面,乃至在能源存储与转换技术领域的规模化应用.因而,开发高效非贵金属基氧电催化剂成为近年来能源存储与转换领域的研究重点之一.在众多已经报道的非贵金属基氧电催化剂中,金属有机骨架材料(MOFs)备受瞩目.MOFs是一类由有机配体和金属节点通过配位键自组装而成的晶态多孔材料.它们具备超高比表面积、超高孔隙率以及规则性纳米孔道.相比较其他传统的多孔材料(比如活性炭、分子筛、介孔炭、介孔氧化硅等),MOFs最主要的优势在于它们的结构和功能可以依据需求通过选择合适的有机配体和金属节点进行便利地设计,或通过后处理进行必要的改性和调节.基于独特的多孔特性以及结构与功能的可设计、可调节性,MOFs在气体分离与存储、异相催化、化学传感、药物输送、环境保护以及能源存储与转化等领域都具有潜在的应用价值.因而,近年来,MOFs备受基础研究领域和工业界的青睐.针对MOFs开展的基础研究和应用开发逐渐成为诸多领域的研究焦点.也正由于MOFs具有的上述优异特性,尤其是结构与功能的可设计、可调节性,使得设计制备基于单纯MOFs以及MOFs衍生材料成为开发高效非贵金属基氧电催化剂的新途径.本综述首先论述了基于单纯MOFs的氧电催化剂(包括纯MOFs、活性物种修饰的MOFs以及与导电材料构成的复合MOFs)的合成以及它们在ORR或OER催化反应中应用的研究进展.在第二部分论述中,本综述主要针对MOFs衍生的各类氧电催化剂(包括无机微米-纳米结构/多孔碳复合材料、纯多孔碳材料、纯无机微米-纳米结构材料以及单原子型电催化材料)的研究进展进行了简要介绍和讨论.最后,本综述对MOFs基氧电催化剂目前存在的挑战进行了简要分析;同时,也对这类氧电催化剂的通用设计准则以及未来发展方向进行了展望.尽管存在诸多挑战,MOFs始终被认为是极好的"平台"材料.充分利用它们将有利于开发高效且实用的非贵金属基氧电催化剂.  相似文献   

8.
9.
10.
Published data on the physical sorption of hydrogen by new materials with a large specific surface area, crystalline microporous metal-organic frameworks (MOFs), are systematized and analyzed. The hydrogen-accumulating properties of MOFs are compared with those of traditional materials (charcoals and zeolites) and nanocarbon systems. The role of secondary hydrogen spillover in the development of new approaches to increase the adsorption capacity of hydrogen storage materials is separately considered.  相似文献   

11.
Metal-organic frameworks(MOFs) are emerging as one of the most intriguing classes of heterogeneous photocatalysts owing to their abundant structures, tunable porosity, and versatile functions. The advantages of bottom-up design and reticular synthesis render MOF materials with desired photocatalytic properties for targeted reactions. In this review, we discussed the design and synthesis of MOF-based photocatalysts as well as strategies for enhancing photocatalytic performance. Recent progress on...  相似文献   

12.
Metal-organic frameworks(MOFs) are a class of outstanding materials in Li-air batteries because of their high surface areas,tailorable pore sizes and diverse catalytic centers.However,MOF-based batteries are facing challenges such as poor electronic conductivity and inferior long-cycle stability that limit their further development.This review first summarizes the progress of pristine MOFs and MOF-derived materials in Li-air batteries in the past 5 years,then provides a perspective for subsequen...  相似文献   

13.
Tuning MOFs: When a metal-organic framework (MOF) with an ordered three-dimensional macroporous structure is integrated into a film, the resulting materials have an additional optical element, which can be used as a general and effective signal transducer. This, in combination with the hierarchical pore structure, makes these films interesting dynamic photonic materials with potential applications in sensors.  相似文献   

14.
正The quickly expanded energy consumption based on traditional fossil fuels has resulted in energy crises and severe environmental problems. Developing sustainable energy conversion technology is an important issue confronting the global energy security and consumption. Electrochemical energy storage and conversion is one of the most perspective renewable ways to produce carbon-free fuels via water splitting, and convert chemicals into electricity by fuel cells  相似文献   

15.
Metal-organic frameworks (MOFs) show high CO2 storage capacity at room temperature. Gravimetric CO2 isotherms for MOF-2, MOF-505, Cu3(BTC)2, MOF-74, IRMOFs-11, -3, -6, and -1, and MOF-177 are reported up to 42 bar. Type I isotherms are found in all cases except for MOFs based on Zn4O(O2C)6 clusters, which reveal a sigmoidal isotherm (having a step). The various pressures of the isotherm steps correlate with increasing pore size, which indicates potential for gas separations. The amine functionality of the IRMOF-3 pore shows evidence of relatively increased affinity for CO2. Capacities qualitatively scale with surface area and range from 3.2 mmol/g for MOF-2 to 33.5 mmol/g (320 cm3(STP)/cm3, 147 wt %) for MOF-177, the highest CO2 capacity of any porous material reported.  相似文献   

16.
Chiral nanoporous metal-organic frameworks are constructed by using dicarboxyl-functionalized chiral Ni(salen) and Co(salen) ligands. The Co(salen)-based framework is shown to be an efficient and recyclable heterogeneous catalyst for hydrolytic kinetic resolution (HKR) of racemic epoxides with up to 99.5% ee. The MOF structure brings Co(salen) units into a highly dense arrangement and close proximity that enhances bimetallic cooperative interactions, leading to improved catalytic activity and enantioselectivity in HKR compared with its homogeneous analogues, especially at low catalyst/substrate ratios.  相似文献   

17.
Hydrogen sulfide is an extremely toxic gas that is also of great interest for biological applications when delivered in the correct amount and at the desired rate. Here we show that the highly porous metal-organic frameworks with the CPO-27 structure can bind the hydrogen sulfide relatively strongly, allowing the storage of the gas for at least several months. Delivered gas is biologically active in preliminary vasodilation studies of porcine arteries, and the structure of the hydrogen sulfide molecules inside the framework has been elucidated using a combination of powder X-ray diffraction and pair distribution function analysis.  相似文献   

18.
The next-generation energy storage systems such as fuel cells, metal-air batteries, and alkali metal(Li,Na)-chalcogen(S, Se) batteries have received increasing attention owing to their high energy density and low cost. However, one of the main obstacles of these systems is the poor reaction kinetics in the involved chemical reactions. Therefore, it is essential to incorporate suitable and efficient catalysts into the cell. These years, single-atom catalysts(SACs) are emerging as a frontier in ca...  相似文献   

19.
Metal-organic frameworks MIL-53, MIL-100 and MIL-101 demonstrate efficient enrichment of peptides with simultaneous exclusion of proteins from complex biological samples.  相似文献   

20.
Selected metal-organic frameworks exhibiting representative properties--high surface area, structural flexibility, or the presence of open metal cation sites--were tested for utility in the separation of CO(2) from H(2) via pressure swing adsorption. Single-component CO(2) and H(2) adsorption isotherms were measured at 313 K and pressures up to 40 bar for Zn(4)O(BTB)(2) (MOF-177, BTB(3-) = 1,3,5-benzenetribenzoate), Be(12)(OH)(12)(BTB)(4) (Be-BTB), Co(BDP) (BDP(2-) = 1,4-benzenedipyrazolate), H(3)[(Cu(4)Cl)(3)(BTTri)(8)] (Cu-BTTri, BTTri(3-) = 1,3,5-benzenetristriazolate), and Mg(2)(dobdc) (dobdc(4-) = 1,4-dioxido-2,5-benzenedicarboxylate). Ideal adsorbed solution theory was used to estimate realistic isotherms for the 80:20 and 60:40 H(2)/CO(2) gas mixtures relevant to H(2) purification and precombustion CO(2) capture, respectively. In the former case, the results afford CO(2)/H(2) selectivities between 2 and 860 and mixed-gas working capacities, assuming a 1 bar purge pressure, as high as 8.6 mol/kg and 7.4 mol/L. In particular, metal-organic frameworks with a high concentration of exposed metal cation sites, Mg(2)(dobdc) and Cu-BTTri, offer significant improvements over commonly used adsorbents, indicating the promise of such materials for applications in CO(2)/H(2) separations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号