首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of carbon centered radical pairs often involve diffusion controlled combination and/or disproportionation reactions which are non-selective. A triplet geminate pair of radicals is produced by the photolysis of suitable ketones. The reactions of such geminate pairs can be controlled though the application of supramolecular concepts which emphasize non-covalent interaction to "steer" the geminate pair toward a selected pathway. In addition, "superdupermolecular" concepts, which emphasize the control of radical pair reactions through the orientation of electron spins, can be employed to further control the course of geminate pair reactions. Examples of control of a range of the selectivity of geminate radical combinations, which form strong covalent bonds, through supramolecular and superdupermolecular effects will be presented for the photolysis of ketones adsorbed in the supercages of zeolites.  相似文献   

2.
The conversion of benzhydryl acetate geminate radical pairs to contact ion pairs following photoinduced homolysis in solution is studied using picosecond pump-probe spectroscopy. The dynamics for the decay of the geminate radical pairs into contact ion pairs is modeled within a Marcus-like theory for nonadiabatic electron transfer. A second decay channel for the geminate radical pairs is diffusional separation to free radicals. The kinetics of this latter process reveals an energy of interaction between the two radicals in the geminate pair.  相似文献   

3.
Molecular dynamics simulation of a simple model system of the geminate radical pair in solution has been performed to elucidate the dynamic behavior of radicals. The diffusion process of radicals in the microscopic region was simulated and the effect of the dipole of the radicals was investigated in both the nonpolar and polar solvents. We found that the dipole-dipole interaction stabilized the radical pair with a small separation. The dipole pair can be the precursor of the experimentally observed sandwich radical dimer. The conformation of the dipole pair may not be favorable for the recombination of the radicals, which can be the reason of the high escape probability observed for the p-aminophenylthiyl radical.  相似文献   

4.
The photochemistry of 3- and 4-benzoylpyridine-cyclodextrin inclusion complexes (BPyCDx) was examined by nanosecond laser flash-photolysis and stationary techniques. The lifetimes of the triplet complex and of the triplet radical pair, formed by H-abstraction from a glucose unit of the CDx, have been measured in β-CDx complexes. The reactivity of the heterocyclic ketones with CDx is higher than that of benzophenone, but the lower binding ability of the macrocycle toward these more hydrophylic molecules induces faster separation of the geminate radicals. The quantum yields of the escaped radicals and their decay kinetics have been determined. The β-CDx cage favours geminate recombination reactions, while α- and -γ-CDx tend to release the guest molecule. Cage products have been spectroscopically characterized in the case of the 3-BPy-β-CDx system.  相似文献   

5.
Abstract— Application of a static external magnetic field (3350 G) during UV-irradiation (>300 nm) reduced the time for 50% photohemolysis of human erythrocytes by the phototoxic drug ketoprofen (3-benzoyl-α-methylbenzoacetic acid) from 96 min to 78 min. This observation can be attributed to a magnetic field induced decrease in the rate of intersystem crossing (kISC) of the geminate triplet radical pair generated by the reduction of ketoprofen in its triplet excited state by erythrocyte membrane constituents, probably lipids. The decrease in kJSC results in an increase in the concentration and/or lifetime of free radicals that escape from the triplet radical pair. Thus the critical radical concentration needed to cause membrane damage and cell lysis is reached sooner in the presence of the magnetic field. In contrast, the photohemolysis induced by the photodynamic agent protoporphyrin IX was not affected by the magnetic field. Protoporphyrin IX photohemolysis, which is initiated by singlet oxygen, does not involve the initial generation of a triplet radical pair and so is not influenced by the magnetic field. The enhancement of ketoprofen-induced photohemolysis by an externally applied magnetic field is the first example of a magnetic field effect on a toxicological process involving free radicals.  相似文献   

6.
A combination of product studies and laser flash photolysis (LFP) was used to study the recombination of radical pairs derived from dibenzyl ketone (DBK) and its methyl derivative. Two sizes of vesicles consisting of dioctade-cyldimethylammonium chloride (DODAC) were generated. In the product studies, irradiation of the ketone led to a substantial overall cage effect both above and below the phase-transition temperature. However, LFP results demonstrate that no geminate reactions, that correspond to the reactions of radicals generated from the same precursor molecule are occurring even at room temperature. The results are discussed in terms of the partition effect where the cage effect is determined by the differences in the solubility of the radical inside the vesicle bilayer and in the aqueous phase. In small (30 nm diameter) vesicles, most of the random recombination occurs after re-entry of the radicals into the bilayer, whereas in large (?150 nm) liposomes, a significant proportion of the recombination reactions takes place in the bulk water. This work demonstrates that magnetic fields can efficiently alter the reactivity of radicals involved in nongeminate pathways and further supports the use of the radical pair mechanism to explain possible effects of magnetic fields in biological systems.  相似文献   

7.
Magnetic field control of photoinduced silver nanoparticle formation   总被引:1,自引:0,他引:1  
The micellar photoreduction of benzophenone in the presence of Ag+ leads to very rapid and efficient formation of silver nanoperticles. External magnetic fields can be used to control the rate of formation and properties of silver nanoparticles generated by reaction of ketyl radicals formed in the photoreduction of benzophenone in surfactant micelles. The effect is attributed to Zeeman splitting of the triplet sublevels of the confined radical pair that causes a reduction in the rate of geminate processes and increases the availability of ketyl radicals (through escape processes) for metal ion reduction.  相似文献   

8.
The effect of temperature on the photolysis of dibenzyl ketone and 4-methyldibenzyl ketone in sodium dodecyl sulfate micelles was studied by laser flash photolysis and product distributions derived from steady-state photolysis. At high temperatures, the product distribution and radical decay kinetics are primarily due to random encounters of radicals, and the "cage effect" cannot be rationalized by geminate recombination reactions that occur before the radicals escape from the micelles. A mechanism is proposed in which the enhancement of the crosstermination product derived from random encounters is due to the different partitioning of each radical species between the micelles and the aqueous phase, thereby leading to different rates for the self-termination reactions.  相似文献   

9.
Henning Paul   《Chemical physics》1979,40(3):265-274
ESR spectroscopy with modulated radical initiation is used to analyze quantitatively chemical lifetimes and CIDEP enhancements of 2-propyl-2-ol radicals, formed by photoreduction of acetone with 2-propanol in aqueous solution at T = 16°C. The bimolecular termination rate constant of the radicals is found to be diffusion controlled and to depend on the hyperfine state as a consequence of T0---S mixing in F-pairs. CIDEP enhancements built up in geminate and in F-pairs are separated. Their relative dependence on the hyperfine state agrees with microscopic theory, which however, fails to reproduce the absolute enhancements by a factor of 4. The polarizations indicate equal reactivities towards photoreduction for the three sublevels of the 3nπ* state of acetone, and conservation of the electron spin polarization upon radical formation. The initial separation of the species in the geminate pair is found to lie within the strong exchange region, since geminate and F-pairs show equal RPM polarizations. The CIDEP enhancements limit the rate constant k22 for abstraction of the hydroxylic hydrogen of 2-propanol by 3nπ* acetone to k22 < 105 dm3 mol−1 s −1.  相似文献   

10.
Magnetic field effect studies of alkylcobalamin photolysis provide evidence for the formation of a reactive radical pair that is born in the singlet spin state. The radical pair recombination process that is responsible for the magnetic field dependence of the continuous-wave (CW) quantum yield is limited to the diffusive radical pair. Although the geminate radical pair of adenosylcob(III)alamin also undergoes magnetic field dependent recombination (A. M. Chagovetz and C. B. Grissom, J. Am. Chem. Soc. 115, 12152–12157, 1993), this process does not account for the magnetic field dependence of the CW quantum yield that is only observed in viscous solvents. Glycerol and ethylene glycol increase the microviscosity of the solution and thereby increase the lifetime of the spin-correlated diffusive radical pair. This enables magnetic field dependent recombination among spin-correlated diffusive radical pairs in the solvent cage. Magnetic field dependent recombination is not observed in the presence of nonviscosigenic alcohols such as isopropanol, thereby indicating the importance of the increased microviscosity of the medium. Paramagnetic radical scavengers that trap alkyl radicals that escape the solvent cage do not diminish the magnetic field effect on the CW quantum yield, thereby ruling out radical pair recombination among randomly diffusing radical pairs, as well as excluding the involvement of solvent-derived radicals. Magnetic field dependent recombination among alkylcobalamin radical pairs has been simulated by a semiclassical model of radical pair dynamics and recombination. These calculations support the existence of a singlet radical pair precursor.  相似文献   

11.
Photodissociation of aromatic molecules and the following geminate dynamics of the photochemically produced fragment radical pair in liquid phase are discussed in relation to the results of ultrafast transient absorption measurements. Photodissociation of tetraphenylhydrazine occurs from the unequilibrated excited singlet state competing with the relaxation to the fluorescence state. In addition to the rapid fragmentation, the N?N bond rupture is clearly demonstrated to take place in the fluorescence state of tetraphenyl-and tetratolyl-hydrazine in tens of picoseconds time scale. In the case of di-p-aminophenyl disulfide in nonpolar solvents, geminate recombination of the p-aminophenylthiyl radical and the formation of the radical dimer were observed in tens of picoseconds. The observed slow geminate recombination can be explained by the repulsion between the large dipole of the fragment radical preventing the reformation of the S?S bond and by the restricted conformation required for the dimer formation at the encounter of radicals.  相似文献   

12.
Most molecular and supramolecular organic photochemical reactions involve paramagnetic reactive intermediates (such as molecular triplet states, triplet radical pairs, and free radicals). In a number of cases these species are created with "anomalous" spin populations which are far from thermal equilibrium. Such paramagnetic species are said to be "spin polarized" and may be observed directly by time-resolved electron paramagnetic resonance (TREPR). The TREPR technique can be applied to exploit spin polarization, which, in addition to providing an enormous signal to noise enhancement, also reveals the mechanisms involved in photochemical reactions. TREPR spectroscopy provides a means of tracking the reaction of radicals with molecules and the nonreactive interactions of radicals with other radicals in real time. The latter interactions provide a systematic investigation of supramolecular interactions of geminate radicals in micelles.  相似文献   

13.
Butyl methacrylate was found to affect the composition of radical intermediates formed in the photoreduction of benzophenone with triethylamine. In the presence of the monomer, the yield of free radicals decreased and the yield of complexes of the geminate radical pair increased. This was explained by the formation of excited ternary complexes resulted from the interaction of the excited triplet state of benzophenone with the ground-state complex of butyl methacrylate and triethylamine. The substituent effect in benzophenone on the stability of the radical complex was studied. The reaction rate constant for the decay of the radical complex was correlated with the Hammett 0 c constant that determines the mesomeric effect of the substituent.  相似文献   

14.
The singlet and triplet states of the anthralin (1,8-dihydroxy-9-anthrone) dehydrodimer have been produced selectively in benzene via pulsed laser excitation and pulse radiolysis respectively. The lifetime of S1 is less than or equal to 30 ps, that of T1 short but unspecified. Both states fragment spontaneously to yield a pair of anthralin radicals. The singlet radical pair predominantly undergoes geminate recombination within the solvent cage. In contrast, the corresponding triplet radical pair undergoes essentially exclusive cage escape to give the anthralin free radical (lambda max 370, 490 and 720 nm) which recombines under normal diffusive conditions. Both recombination processes lead, at least in part, to one or more species which have been assigned as tautomeric forms of the original dimer. The anthralin free radical in benzene is insensitive to the vitamin E model 6-hydroxy-2,2,5,7,8-pentamethylchroman and reacts only slowly with oxygen.  相似文献   

15.
The time dependence of the magnetic field effect on radical recombination in solution has been analyzed experimentally and theoretically. For the geminate recombination of anthracene anions and dimethylaniline cations in a polar solvent, the effect originates from a magnetic field dependent production of triplet states in an initially singlet phased radical pair, induced by hyperfine interaction of the unpaired electrons with the nuclei. The magnetic field dependence of the triplet yield shows a lifetime broadening of the energy levels of the radical pair if a short delay-time between radical production and triplet observation is chosen. The agreement of this delay-time dependent broadening effect with the theoretical results proves directly the coherence of the spin motion in the radical pairs.  相似文献   

16.
The effect of an external magnetic field on the yield of the benzophenone ketyl radical has been investigated by a new, double-pulse technique. The technique and its variants can be used not only for studying geminate recombination of photochemically produced radical pairs but also for continuous photoelectric recording of fluorescence spectra of the free radicals which can be generated by nitrogen laser irradiation.  相似文献   

17.
Chemically Induced Dynamic Nuclear Polarization (CIDNP) of the diamagnetic products of radical reactions is exploited for the purpose of determination of the hyperfine coupling constants (HFCCs) of the radical intermediates. A simple proportionality relation between geminate CIDNP of a nucleus and its HFCC at the radical stage is established. The applicability range of this relation is determined: the relation is fulfilled in the case of a large difference in g-factor between the radicals involved and for the situation where the number of magnetic nuclei in the system is sufficiently large. The validity of the relation was confirmed by CIDNP experiments on radical pairs with precisely known HFCCs. Using the proportionality relation we were able to measure the HFCCs in various short-lived radicals of the amino acids histidine and tryptophan and of the S-N-centered cyclic radical of methionine derived from the methionine-glycine dipeptide in aqueous solution.  相似文献   

18.
Photolysis of dibenzoyldiazene gives benzoyl radicals. In aerated solutions, the benzoyl radicals react with oxygen to yield benzoylperoxy radicals. Spin trapping studies indicate that 5,5′dimethyl-1-pyrroline N-oxide reacts with the benzoylperoxy radicals to produce the adduct which exhibits ESR parameters, AN = 13.8 G and A = 10.1 G. Laser photolysis studies reveal that the rate constants for the reaction between the benzoyl radical and oxygen are ca. 4 × 109 M-1 s-1 in toluene, acetone, and ethyl acetate. The benzoylperoxy radicals undergo one-electron oxidation of tetramethyl-p-phenylenediamine, TMPD, to give an ion pair. The ion pair has an absorption spectrum similar to that of the TMPD cation radical. The formation of the ion pair is detected by monitoring the absorbance change at 600 nm after laser pulsing. From the kinetic studies for the formation of the ion pair in the presence of olefins, the bimolecular rate constants for reactions between several olefins and the benzoylperoxy radical are determined. The electrophilic addition of the benzoylperoxy radicals to olefins is discussed in comparison with the addition reactions of thiyl radicals to olefins. The detection and determination of the dipole moments of both the benzoylperoxy radicals and the ion pair are carried out with the use of the time-resolved microwave dielectric absorption technique. The distance between the positive and negative ions in the ion pair is estimated as 0.20 nm.  相似文献   

19.
Rates of peroxidation of human LDL and rates of consumption of the LDL's alpha-tocopherol (TocH) have been measured at 37 degrees C. Peroxidation was initiated by radicals generated in the aerated aqueous phase at known rates by thermal decomposition of appropriate precursors: superoxide (O2(*-)/HOO(*)) from a hyponitrite and alkylperoxyls (ROO(*), two positively charged, one negatively charged and one neutral) from azo compounds. The efficiencies of escape from the solvent cage of the geminate pair of neutral carbon-centered radicals was found to be 0.1, but it was 0.5 for the three charged radicals, a result attributed to radical/radical Coulombic repulsion within the cage. All four alkylperoxyls initiated and terminated tocopherol-mediated peroxidation (TMP) with about equal efficiency and essentially all of these radicals that were generated were consumed in these two reactions. TMP is a radical chain process, and when initiated by the alkylperoxyls, the rate of LDL peroxidation was faster in the early stages while TocH was present than later, after all of this "antioxidant" had been consumed. In contrast, only about 3-4% of the generated superoxide radicals reacted in any measurable fashion with TocH-containing LDL at pH's from 7.6 to 6.5 and peroxidation was much slower than with a similar rate of generation of alkylperoxyls. After all the TocH had been consumed, LDL peroxidation was negligible at pH 7.6 and 7.4, but at pH 6.8 and 6.5, the peroxidation rates showed a large increase over the rates while the TocH had been present. That is, endogenous TocH behaves as an antioxidant in LDL subjected to attack by the physiologically relevant superoxide radical, whereas TocH behaves as a prooxidant in LDL subjected to attack by the probably far less physiologically important alkylperoxyls. Rates of LDL peroxidation initiated by superoxide increased as the pH was decreased, and the results are consistent with the initiation of peroxidation of fresh LDL occurring via H-atom abstraction from TocH by HOO(*) to form the Toc(*) radical and termination by reaction of O2(*-) with Toc(*), a process that occurs partly by addition leading to TocH consumption and partly by electron plus proton transfer leading to the regeneration of TocH.  相似文献   

20.
Polypropylene (PP) and polyethylene (PE) peroxy radicals undergo photoreactions, but under commonly encountered photodegradation conditions these reaction rates are much lower than those of conventional radical reactions; for example, for PP peroxy radicals in noon summer sunlight at 25°C their rate of photolysis to alkyl radicals is less than one-tenth of their rate of hydrogen abstraction from the polymer. At lower temperatures( < ?10°C) or when more intense radiation is used, however, peroxy radical photolysis becomes a proportionately more important source of alkyl radicals. In addition, occurrence of photoinduced radical combination is confirmed but is shown to be important only when photolysis generates an alkyl radical sufficiently close to a peroxy radical that termination can occur before oxygen reconverts the alkyl radical to a peroxy radical. This termination mechanism therefore becomes more important for radicals generated at lower temperatures when the average separation of a radical pair is lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号