首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A new pulse sequence for high-resolution solid-state heteronuclear double-quantum MAS NMR spectroscopy of dipolar-coupled spin-12 nuclei is introduced. It is based on the five-pulse sequence known from solution-state NMR, which is here applied synchronously to both spin species. The heteronuclear double-quantum (HeDQ) spinning-sideband patterns produced by this experiment are shown to be sensitive to the heteronuclear distance, as well as the relative orientations of the chemical-shift and dipolar tensors. In particular, it is shown that the HeDQ patterns exhibit an enhanced sensitivity to the chemical shielding tensors as compared with the single-quantum spinning-sideband patterns. The detection of HeDQ patterns via the I and S spins is discussed. The isolated (13)C-(1)H spin pair in deuterated ammonium formate with (13)C in natural abundance was chosen as a model system, and the perturbing influence of dipolar couplings to surrounding protons on the (13)C-(1)H DQ coherence is discussed. The pulse sequence can also be used as a heteronuclear double-quantum filter, hence providing information about heteronuclear couplings, and thus allowing the differentiation of quaternary and CH(n) bonded carbons. The elucidation of (13)C-(1)H dipolar proximities is presented for a sample of bisphenol A polycarbonate with (13)C in natural abundance, recorded with a broadband version of the synchronized five-pulse sequence.  相似文献   

2.
A novel three-dimensional NMR experiment is reported that allows the observation of correlations between amide and other protons via residual dipolar couplings in partially oriented proteins. The experiment is designed to permit quantitative measurement of the magnitude of proton–proton residual dipolar couplings in larger molecules and at higher degree of alignments. The observed couplings contain data valuable for protein resonance assignment, local protein structure refinement, and determination of low-resolution protein folds.  相似文献   

3.
Double quantum (DQ), J-resolved (1)H NMR spectra from rat and bovine skeletal muscle showed a splitting frequency ( approximately 24 Hz) for the lactate methyl protons that varied with the orientation of the muscle fibers relative to the magnetic field. In contrast, spectra of lactate in solution consist of a J-coupled methyl doublet and a J-coupled methine quartet (J(HH) = 7 Hz) with no sensitivity to sample orientation. Spectra acquired in magnetic fields of 4.7, 7, and 11 T showed that the splitting was not due to inhomogeneities in magnetic susceptibility within the muscle, because the magnitude of the splitting did not scale with the strength of B(0) fields. Triple quantum coherence (TQC) spectra revealed two distinct transition frequencies on the methyl resonance. These frequencies resulted from intra-methyl and methine-methyl couplings in this four spin system (A(3)X). Decoupling experiments on the triple quantum coherence showed that the observed frequency splitting was due mainly to the dipolar interactions between the methine and methyl protons of the lactate molecule. Thus, all the proton resonances of the lactate molecules in muscle behave anisotropically in the magnetic field. Adequate design and interpretation of spectroscopic experiments to measure lactate in muscle, and possibly in any cell and organ which contain asymmetric structures, require that both the dipolar coupling described here and the well-known scalar coupling be taken into account.  相似文献   

4.
Proton nuclear magnetic resonance (NMR) magnetization exchange is used to investigate residual dipolar couplings in a series of cross-linked poly(styrene-cobutadiene) elastomers. A new model for the dipolar unit is used for the evaluation of the signal decay in magnetization exchange experiments. It takes into account an extended residual dipolar coupling network along the polymer chain. It is shown that in the regime of short mixing times, information about the residual dipolar coupling between methine and methylene protons can be obtained which is not affected by other inter- and intramolecular dipolar couplings. The dynamic order parameter of methine-methylene protons is measured and correlated with cross-link density. This study certifies the quality of a filter for magnetization from residual dipolar couplings which exploit magnetization exchange. The filter can be used to generate contrast in NMR images of heterogeneous elastomers. The first proton NMR parameter image of a dynamic order parameter is presented for a phantom made from poly(styrene-cobutadiene) samples with different cross-link densities.  相似文献   

5.
One-bond heteronuclear and two-bond homonuclear residual dipolar couplings measured at methylene or amine sites can be utilized as long-range constraints in structure determination of molecules as well as to facilitate characterization of local conformation by stereospecific assignment of diastereotopic protons. We present two J-modulated HMQC type experiments to measure the one-bond heteronuclear dipolar coupling contributions of geminal protons individually. In addition two-bond homonuclear residual dipolar couplings between the diastereotopic protons are also obtained.  相似文献   

6.
Spin diffusion between 13CH3 groups in solids is studied both theoretically and experimentally. It is shown to be dominated by mutual spin flip–flops of protons belonging to neighbouring methyl groups. Also nonmethyl protons may contribute significantly if present in the sample. The spin–rotational ground state of 13CH3 consists of 16 sublevels. When their populations are used to describe spin diffusion, eight population combinations are shown to be important, two of them corresponding to the 13C–proton and proton–proton intra-methyl magnetic dipolar energies, Dc and Dp, respectively. Spin-diffusion transitions modulate these combinations so that a further reduction to two sets of four combinations is possible, with no coupling between the sets. Coupled differential equations are derived to describe the time dependence of the combinations in each set. They are solved numerically and compared with experimental results on a single crystal of aspirin with 13C-labelled methyl groups at the carbon resonance. The 13C NMR induction signal was observed as a function of time after the preparation either at the carbon resonance (a two-pulse sequence) or at the proton resonance (proton saturation). Usually carbon spectra were computed first and then three of the mentioned population combinations were obtained from the individual spectral components. Some results on the time dependence of Dc were also obtained directly from the amplitude of the out-of-phase induction signal. Theoretical predictions are found to describe semiquantitatively the overall time dependence of these three combinations and especially their variation with different initial conditions, which are discussed in detail. Also the partial transfer of the magnetic dipolar energy between Dc and Dp is nicely explained. Reasons for discrepancies are discussed.  相似文献   

7.
Incoherent spin motion, such as diffusion, can lead to significant signal loss in multiple spin echoes (MSE) experiments, sometimes to its complete extinction. Coherent spin motion, such as laminar flow, can also modify the magnetization in MSE imaging and yield additional contrast. Our experimental results indicate that MSE is flow-sensitive. Our theoretical analysis and experimental results show how the effect of the distant dipolar field can be annihilated by flow. This effect can be quantified by directly solving the nonlinear Bloch equation, taking into account the deformation of the dipolar field by motion. Unexpected results have been observed, such as a recovery of the dipolar interaction due to flow in the "magic angle" condition.  相似文献   

8.
A comparative multinuclear relaxation study of DMSO-protein and water-protein interactions has been undertaken to discover whether cross relaxation between water and protein protons proceeds mainly by proton-exchange or direct dipolar interactions. The analysis suggests that the proton-exchange mechanism dominates the cross relaxation from water. In contrast, the high efficiency of dipolar cross relaxation in DMSO-protein gels, which lack exchangeable protons, arises from an unusually long lifetime of DMSO molecules at the protein interface. These results are important for understanding the origin of image contrast in clinical nuclear magnetic resonance imaging and the nature of protein-solvent interactions in nonaqueous systems.  相似文献   

9.
A new approach for high-resolution solid-state heteronuclear multiple-quantum MAS NMR spectroscopy of dipolar-coupled spin- nuclei is introduced. The method is a heteronuclear chemical shift correlation technique of abundant spins, like 1H with rare spins, like 13C in natural abundance. High resolution is provided by ultra-fast MAS and high magnetic fields, high sensitivity being ensured by a direct polarization transfer from the abundant protons to 13C. In a rotor-synchronized variant, the method can be used to probe heteronuclear through-space proximities, while the heteronuclear dipolar coupling constant can quantitatively be determined by measuring multiple-quantum spinning-sideband patterns. By means of recoupling, even weak heteronuclear dipolar interactions are accessible. The capabilities of the technique are demonstrated by measurements on crystalline -tyrosine hydrochloride salt.  相似文献   

10.
Contrastfilters for NMR imaging of residual 1H dipolar couplings of elastomers are introduced based on dipolar-encoded longitudinal magnetization, as well as double- and triple-quantum coherences. The spin response is discussed in the initial excitation time regime for methylene, methyl, and methine protons applicable to poly(isoprene) and other elastomers, taking into account the hierarchy of dipolar couplings and the associated editing features of multiple-quantum experiments. The efficiency of these filters is investigated for a series of cross-linked poly(isoprene) samples. Spatially resolved dipolar-encoded longitudinal magnetization decays and double-quantum and triple-quantum buildup curves are presented for a phantom made of poly(isoprene) with different cross-link densities. Two-dimensional images representing residual dipolar couplings are presented using dipolar-encoded longitudinal magnetization, double-quantum, and triple-quantum contrast filters. Images from dipolar-encoded longitudinal magnetization and triple-quantum coherences show the highest resolution and contrast, respectively.  相似文献   

11.
Contrastfilters for NMR imaging of residual 1H dipolar couplings of elastomers are introduced based on dipolar-encoded longitudinal magnetization, as well as double- and triple-quantum coherences. The spin response is discussed in the initial excitation time regime for methylene, methyl, and methine protons applicable to poly(isoprene) and other elastomers, taking into account the hierarchy of dipolar couplings and the associated editing features of multiple-quantum experiments. The efficiency of these filters is investigated for a series of cross-linked poly(isoprene) samples. Spatially resolved dipolar-encoded longitudinal magnetization decays and double-quantum and triple-quantum buildup curves are presented for a phantom made of poly(isoprene) with different cross-link densities. Two-dimensional images representing residual dipolar couplings are presented using dipolar-encoded longitudinal magnetization, double-quantum, and triple-quantum contrast filters. Images from dipolar-encoded longitudinal magnetization and triple-quantum coherences show the highest resolution and contrast, respectively.  相似文献   

12.
This work introduces a simple new solid-state 13C NMR method for distinguishing various types of aromatic residues, e.g. those of lignin from fused rings of charcoal. It is based on long-range dipolar dephasing, which is achieved by recoupling of long-range C-H dipolar interactions, using two 1H 180 degrees pulses per rotation period. This speeds up dephasing of unprotonated carbon signals approximately threefold compared to standard dipolar dephasing without recoupling and thus provides much more efficient differential dephasing. It also reduces the effects of spinning-speed dependent effective proton-proton dipolar couplings on the heteronuclear dephasing. Signals of unprotonated carbons with two or more protons at a two-bond distance dephase to <3% within less than 0.9 ms, significantly faster than those of aromatic sites separated from the nearest proton by three or more bonds. Differential dephasing among different unprotonated carbons is demonstrated in a substituted anthraquinone and 3-methoxy benzamide. The data yield a calibration curve for converting the dephasing rates into estimated distances from the carbon to the nearest protons. This can be used for peak assignment in heavily substituted or fused aromatic molecules. Compared to lignin, slow dephasing is observed for the aromatic carbons in wood charcoal, and even slower for inorganic carbonate. Direct 13C polarization is used on these structurally complex samples to prevent loss of the signals of interest, which by design originate from carbons that are distant from protons and therefore crosspolarize poorly. In natural organic matter such as humic acids, this combination of recoupled dipolar dephasing and direct polarization at 7-kHz MAS enables selective observation of signals from fused rings that are characteristic of charcoal.  相似文献   

13.
Electron spin relaxation times for four triarylmethyl (trityl) radicals at room temperature were measured by long-pulse saturation recovery, inversion recovery, and electron spin echo at 250 MHz, 1.5, 3.1, and 9.2 GHz in mixtures of water and glycerol. At 250 MHz T(1) is shorter than at X-band and more strongly dependent on viscosity. The enhanced relaxation at 250 MHz is attributed to modulation of electron-proton dipolar coupling by tumbling of the trityl radicals at rates that are comparable to the reciprocal of the resonance frequency. Deuteration of the solvent was used to distinguish relaxation due to solvent protons from the relaxation due to intra-molecular electron-proton interactions at 250 MHz. For trityl-CD(3), which contains no protons, modulation of dipolar interaction with solvent protons dominates T(1). For proton-containing radicals the relative importance of modulation of intra- and inter-molecular proton interactions varies with solution viscosity. The viscosity and frequency dependence of T(1) was modeled based on dipolar interaction with a defined number of protons at specified distances from the unpaired electron. At each of the frequencies examined T(2) decreases with increasing viscosity consistent with contributions from T(1) and from incomplete motional averaging of anisotropic hyperfine interaction.  相似文献   

14.
The measurement of dipolar couplings between nuclei is a convenient way of obtatining directly liquid crystalline ordering through NMR since the coupling is dependent on the average orientation of the dipolar vector in the magnetic field which also aligns the liquid crystal. However, measurement of the dipolar coupling between a pair of selected nuclei is beset with problems that require special solutions. In this article the use of cross polarization for measuring dipolar couplings in liquid crystals is illustrated. Transient oscillations observed during cross polarization provide the dipolar couplings between essentially isolated nearest neighbour spins which can be extracted for several sites simultaneously by employing two-dimensional NMR techniques. The use of the method for obtaining heteronuclear dipolar couplings and hence the order parameters of liquid crystals is presented. Several modifications to the basic experiment are considered and their utility illustrated. A method for obtaining proton-proton dipolar couplings, by utilizing cross polarization from the dipolar reservoir, is also presented.  相似文献   

15.
A method for selectively suppressing the signals of OH and NH protons in (1)H combined rotation and multiple-pulse spectroscopy (CRAMPS) and in (1)H-(13)C heteronuclear correlation (HETCOR) solid-state NMR spectra is presented. It permits distinction of overlapping CH and OH/NH proton signals, based on the selective dephasing of the magnetization of OH and NH protons by their relatively large (1)H chemical-shift anisotropies. For NH protons, the (14)N-(1)H dipolar coupling also contributes significantly to this dephasing. The dephasing is achieved by a new combination of heteronuclear recoupling of these anisotropies with (1)H homonuclear dipolar decoupling. Since the 180 degrees pulses traditionally used for heteronuclear dipolar and chemical-shift anisotropy recoupling would result in undesirable homonuclear dephasing of proton magnetization, instead the necessary inversion of the chemical-shift Hamiltonian every half rotation period is achieved by inverting the phases of all the pulses in the HW8 multiple-pulse sequence. In the HETCOR experiments, carefully timed (13)C 180 degrees pulses remove the strong dipolar coupling to the nearby (13)C spin. The suppression of NH and OH peaks is demonstrated on crystalline model compounds. The technique in combination with HETCOR NMR is applied to identify the CONH and NH-CH groups in chitin and to distinguish NH and aromatic proton peaks in a peat humin.  相似文献   

16.
Numerical simulations and experiments were used to examine the possibility of employing strong spin-lock fields for recoupling of homonuclear dipolar interactions between spin-3/2 quadrupolar nuclei and to compare it to the rotary-resonance recoupling at weak spin-lock fields. It was shown that strong spin-lock pulses under MAS conditions can lead to recoupling, provided that the electric-field gradient principal axes systems of the coupled nuclei are aligned and that their quadrupolar coupling constants are approximately the same. The phenomenon is based on the fact that strong spin-lock pulses induce adiabatic transfer of magnetization between the central-transition coherence and the triple-quantum coherence with equal periodicity as is the periodicity of the time-dependent dipolar coupling. Because of the synchronous variation of the state of the spin system and of the dipolar interaction, the effect of the latter on the central-transition coherence and on the triple-quantum coherence is not averaged out by sample rotation. The approach is, however, very sensitive to the relative orientation of the electric-field gradient principal axes systems and therefore less robust than the approach based on weak spin-lock pulses that satisfy rotary-resonance condition.  相似文献   

17.
Xin Li 《中国物理 B》2021,30(12):120501-120501
We numerically study the interaction dynamics of two bright solitons with zero initial velocities in the one-dimensional dipolar Bose-Einstein condensates. Under different dipolar strengths, the two bright solitons can merge into a breathing wave, and then split or propagate constantly after several oscillating periods. We quantitatively study the breathing frequency of wave after merging and the asymmetry property of solitons after splitting, and analyze their formation mechanism by the system's energy evolution. Also, the change of initial phase difference brings distinct effects on the soliton interaction. Our results provide insight into the new dynamical phenomena in dipolar systems and enrich the understanding for interaction between dipolar solitons.  相似文献   

18.
The effect of proton exchange on the measurement of1H–1H,1H–2H, and2H–2H residual dipolar interactions in water molecules in bovine Achilles tendons was investigated using double-quantum-filtered (DQF) NMR and new pulse sequences based on heteronuclear and homonuclear multiple-quantum filtering (MQF). Derivation of theoretical expressions for these techniques allowed evaluation of the1H–1H and1H–2H residual dipolar interactions and the proton exchange rate at a temperature of 24°C and above, where no dipolar splitting is evident. The values obtained for these parameters at 24°C were 300 and 50 Hz and 3000 s−1, respectively. The results for the residual dipolar interactions were verified by repeating the above measurements at a temperature of 1.5°C, where the spectra of the H2O molecules were well resolved, so that the1H–1H dipolar interaction could be determined directly from the observed splitting. Analysis of the MQF experiments at 1.5°C, where the proton exchange was in the intermediate regime for the1H–2H dipolar interaction, confirmed the result obtained at 24°C for this interaction. A strong dependence of the intensities of the MQF signals on the proton exchange rate, in the intermediate and the fast exchange regimes, was observed and theoretically interpreted. This leads to the conclusion that the MQF techniques are mostly useful for tissues where the residual dipolar interaction is not significantly smaller than the proton exchange rate. Dependence of the relaxation times and signal intensities of the MQF experiments on the orientation of the tendon with respect to the magnetic field was observed and analyzed. One of the results of the theoretical analysis is that, in the fast exchange regime, the signal decay rates in the MQF experiments as well as in the spin echo or CPMG pulse sequences (T2) depend on the orientation as the square of the second-rank Legendre polynomial.  相似文献   

19.
It is shown that the proton chemical-shift anisotropy of hydrate crystals affect dipolar powder pattern at 7.0 T. This may be clearly observed via an asymmetric envelope of dipolar spinning sidebands in magic-angle spinning proton spectra.  相似文献   

20.
《Physics letters. A》2020,384(28):126742
We propose a ring-groove nanostructure which can achieve toroidal dipolar resonance under normal incidence, and find that this design, due to the strong field confinement for this dipolar resonance, can simultaneously enhance the radiative decay rate and achieve high degree of linear polarization of the fluorescence emission. In addition, both radiation enhancement and degree of linear polarization are higher than those by other structure that cannot obtain toroidal dipolar resonance. It is expected that this design can promote the development of polarized light-emitting devices with enhanced emission intensity and potentially functional toroidal metasurface lasers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号