首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An apparatus for the continuous generation of test gases from organic compounds of the VOC (Volatile Organic Compounds) and SVOC (Semivolatile Organic Compounds) categories has been developed. The use of a new test gas generator together with a system of heated transfer lines enabled the dynamic generation of test gases also of components with relatively low vapour pressures. With the help of an on-line coupled gas chromatograph the actual test gas concentrations were monitored. The apparatus has been evaluated for the compounds n-decane and pyrene. Received: 27 August 1998 / Revised: 3 March 1999 / Accepted: 6 March 1999  相似文献   

2.
Vegetables and fruits are necessary for human health, and traditional Chinese medicine that uses plant materials can cure diseases. Thus, understanding the composition of plant matrix has gained increased attention in recent years. Since plant matrix is very complex, the extraction, separation and quantitation of these chemicals are challenging.  相似文献   

3.
A method for the accurate determination of volatile organic compounds (VOC) in milk samples has been developed and tested. It combines multiple dynamic headspace extraction with GC-MS. Absolute amounts of VOC in the liquid phase are obtained by determining the first order kinetic dependence of the stepwise extraction of the analytes and internal standards from the liquid matrix. Compounds released from milk were collected on a train of traps filled with different solid sorbents to cover all components having a number of carbon atoms ranging from 4 to 15. They were analysed by GC-MS after thermal desorption of VOC from the collecting traps. Quantification of VOC in milk was performed using deuterated compounds as internal standards. The method was used to follow seasonal variations of monoterpenes in goat milk and to detect the impact of air pollution on the quality of milk.  相似文献   

4.
An application of gas sensors for rapid bioanalysis is presented. An array of temperature-modulated semiconductor sensors was used to characterize the headspace above a cell culture. Recombinant Saccharomyces cerevisiae yeast cells, able to respond to 17-estradiol by producing a reporter protein, were used as a model system. Yeast cells had the DNA sequence of the human estrogen receptor stably integrated into the genome, and contained expression plasmids carrying estrogen-responsive sequences and the reporter gene lac-Z, encoding the enzyme -galactosidase. The sensor-response profiles showed small but noticeable discrimination between cell samples induced with 17-estradiol and non-induced cell samples. The sensor array was capable of detecting changes in the volatile organic compound composition of the headspace above the cultured cells, which can be associated with metabolic changes induced by a chemical compound. This finding suggests the possibility of using cross-selective gas-sensor arrays for analysis of drugs or bioactive molecules through their interaction with cell systems, with the advantage of providing information on their bioavailability.  相似文献   

5.
This paper reviews literature information on the behaviour of semivolatile organic compounds (SVOCs) in the indoor environment, as well as the most likely emission sources. The consecutive stages of analytical procedures used for monitoring SVOCs in indoor environments are described. The most common approaches used for collecting samples from the gas and particulate phases are mentioned. The paper discusses and compares various types of sorbents and filters applied in dynamic, passive and denudational techniques, as well as the techniques used to liberate the SVOCs, including Soxhlet, sonication and microwave extraction. The main advantages and disadvantages of each technique are discussed, together with possible future trends. The approaches commonly used during the final determination step, such as gas chromatography and liquid chromatography, are presented together with their possible drawbacks, and ways of eliminating them are suggested. The review makes brief reference to the effects of human exposure to SVOCs in house dust and discusses the main aspects of the analytical procedures used to monitor the presence of SVOCs in this medium.  相似文献   

6.
Quantification and transformation of organic compounds are pivotal in understanding atmospheric processes, because such compounds contribute to the oxidative capacity of the atmosphere and drive climate change. It has recently been recognized that chemical reactions in snow play a role in the production or destruction of photolabile volatile organic compounds (VOC). We present an environmentally friendly method for determination of VOC and semi-VOC in snow collected at three sites—remote, urban, and (sub-)arctic. A solid-phase micro-extraction (SPME) procedure was developed and (semi-)VOC were identified by gas chromatography with mass spectrometric detection (GC–MS). A broad spectrum of (semi-)VOC was found in snow samples, including aldehydes, and aromatic and halogenated compounds. Quantification was performed for 12 aromatic and/or oxygenated compounds frequently observed in snow by use of neat standard solutions. The concentrations detected were between 0.12 (styrene and ethylbenzene) and 316 μg L−1 (toluene) and limits of detection varied between 0.11 (styrene) and 1.93 μg L−1 (benzaldehyde). These results indicate that the SPME technique presented is a broad but selective, versatile, solvent-free, ecological, economical, and facile method of analysis for (semi-)VOC in natural snow samples.  相似文献   

7.
Open-loop stripping analysis (also referred to as dynamic headspace) is a very flexible and robust technology for online monitoring of volatile organic compounds in wastewater or coolant. However, the quality and reliability of the analytical results depend strongly on the temperature during the stripping process. Hence, the careful and constant heating of the liquid phase inside the stripping column is a critical parameter. In addition, this stripping at high temperatures extends the spectrum of traceable organics to less volatile and more polar compounds with detection limits down to the ppm-level. This paper presents a novel and promising approach for fast, efficient, and constant heating by the direct injection of process steam into the strip medium. The performance of the system is demonstrated for temperatures up to 75 °C and traces of various hydrocarbons in water (e.g., tetrahydrofuran, methanol, 1-propanol, n-butanol, ethylbenzene).  相似文献   

8.
土壤中64种痕量半挥发性有机污染物的分析方法研究   总被引:1,自引:0,他引:1  
利用超声提取技术将土壤中的半挥发性有机污染物(SVOC)提取出来, 经旋转蒸发浓缩至一定体积后, 用ODSC18柱净化, 再用氮吹浓缩后, 取1.0 μL注入气相色谱中, 用DB-5 ms柱分离, 用气相色谱质谱仪(GC-MS)进行定性定量分析. 本方法研究土壤中64种半挥发性有机污染物, 其中包括苯系物、苯酚类、苯胺类、硝基芳香烃类、氯代芳烃类、多环芳烃类和酞酸酯类等物质的提取、净化方法以及回收率、精密度和检测限的测定. 该方法回收率为52.5%~105%.  相似文献   

9.
Methods for the isolation and/or concentration of volatile organic compounds from water samples for trace organic analysis by gas chromatography are reviewed. The following basic groups of methods are discussed: liquid-liquid extraction, adsorption on solid sorbents, extraction with gas (gas stripping and static and dynamic headspace techniques) and membrane processes. The theoretical bases of these methods are discussed. Experimental arrangements for the isolation and/or concentration of volatile compounds from water are presented and discussed with respect to their efficiency. The applicability of the described methods to the isolation and/or concentration of various organic compounds from waters of various origins is discussed.  相似文献   

10.
Sorbent trapping of volatile organic compounds from air   总被引:7,自引:0,他引:7  
The use of sorbents in trapping volatile organic compounds in air for subsequent analysis is reviewed. Sorbents are classified in accordance with the mechanism used to recover the trapped compounds, either solvent or thermal desorption. The use of sorbents is contrasted with other sampling procedures, such as collecting whole air samples using canisters. New developments such as solid-phase microextraction are described. In particular, emphasis is placed on a holistic approach to sampling and analysis, and communication is encouraged between those who take samples in the field, and those who perform the analysis.  相似文献   

11.
In contrast to common glassy polymers, poly(1-trimethylsilyl-1-propyne) (PTMSP), a high free volume glassy polymer, shows a preferable permeation of large condensable organic vapors in comparison to permanent gases. In order to investigate this phenomenon, a systematic permeability study over a large activity range has been performed on PTMSP with three types of volatile organic compounds (VOCs) as diffusing probes: toluene, dimethylketone and dichloromethane. PTMSP was synthesized with different catalytic systems (Nb or Ta based) able to induce controlled sub-molecular cistrans structures. Whereas dimethylketone and dichloromethane permeability can be correctly described by a classical dual-mode equation, a peculiar bell shaped pattern was obtained for toluene, with a minimum permeability located at an activity value around a=0.3–0.4. In that case, only a dual-mode expression taking into account a concentration dependent diffusion coefficient can account for the results.

On the other hand some apparent conflicting data recorded from PTMSP brand new films were related to the microstructure of the polymer main chain thanks to 13C NMR spectroscopy analysis showing importance of cis- and trans-forms of the main chain of PTMSP. cis-Structure is more flexible and can be responsible for the creation of a higher density physical network (HDN) in polymeric matrix; conversely, trans-structure is more rigid and can provide lower density physical network (LDN). The higher permeability recorded for several probes through PTMSP synthesized with TaCl5/Al(i-Bu)3 catalytic system compared to those of NbCl5 based polymer can be explained by the geometric difference of the macromolecule networks.  相似文献   


12.
Production of organic nitrates from OH reaction with cyclohexane, cyclohexene, n‐butane, 1‐bromopropane, and p‐xylene in the presence of NO was studied. The total organic nitrate yields for cyclohexane and n‐butane were determined to be 17 ± 4 and 7 ± 2% respectively, which is in good agreement with previous determinations. Total yields for cyclohexene, 1‐bromopropane, and p‐xylene were 2.5 ± 0.5, 1.2 ± 0.3, and 3.2 ± 0.7 respectively. The yield for cyclohexene was five times smaller than that for cyclohexane. The 1‐bromopropane yield is three times smaller that that for n‐propane, but similar to that for propene, indicating that the effect of Br substitution in the reactant may be similar to that for OH substitution. The only nitrooxy product detected for p‐xylene was 4‐methylbenzylnitrate, which was formed following H abstraction from either methyl group. No organic nitrate was detected for peroxy radicals produced from OH addition to the ring, which accounts for 90% of the OH oxidation of p‐xylene. The calculated k3b/k3 value for p‐methyl benzyl peroxy radicals (0.32) was slightly smaller than for n‐octyl peroxy radicals (0.39). These data imply that substituent inductive effects impact the k3b/k3 ratios. We found no significant difference in the k3b/k3 ratios for primary vs. secondary peroxy radicals of the same carbon chain. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 675–685, 2005  相似文献   

13.
The sensitivity and precision of headspace solid-phase micro extraction (HS-SPME) at an analyte solution temperature (T as) of +35 °C and a fiber temperature (T fiber) of +5 °C were compared with those for HS-SPME at T as and T fiber of −20 °C for analysis of the volatile organic compounds benzene, 1,1,1-trichloroethane, trichloroethylene, toluene, o-xylene, ethylbenzene, m/p-xylene, and tetrachloroethylene in water samples. The effect of simultaneous fiber cooling and analyte solution freezing during extraction was studied. The compounds are of different hydrophobicity, with octanol/water partition coefficients (Kow) ranging from 126 and 2511. During a first set of experiments the polydimethylsiloxane (PDMS) SPME fiber was cooled to +5 °C with simultaneous heating of the aqueous analyte solution to +35 °C. During a second set of experiments, both SPME fiber holder and samples were placed in a deep freezer maintained at −20 °C for a total extraction time of 30 min. After approximately 2 min the analyte solution in the vial began to freeze from the side inwards and from the bottom upwards. After approximately 30 min the solution was completely frozen. Analysis of VOC was performed by coupling HS-SPME to gas chromatography-mass spectrometry (GC-MS). In general, i.e. except for tetrachloroethylene, the sensitivity of HS-SPME increased with increasing compound hydrophobicity at both analyte solution and fiber temperatures. At T as of +35 °C and T fiber of +5 °C detection limits of HS-SPME were 0.5 μg L−1 for benzene, 1,1,1-trichloroethane, trichloroethylene, and tetrachloroethylene, 0.125 μg L−1 for toluene, and 0.025 μg L−1 for ethylbenzene, m/p-xylene, and o-xylene. In the experiments with T as and T fiber of −20 °C, detection limits were reduced for compounds of low hydrophobicity (Kow<501), for example benzene, toluene, 1,1,1-trichloroethane, and trichloroethylene. In the concentration range 0.5–62.5 μg L−1, the sensitivity of HS-SPME was enhanced by a factor of approximately two for all compounds by performing the extraction at −20 °C. A possible explanation is that freezing of the water sample results in higher concentration of the target compounds in the residual liquid phase and gas phase (freezing-out), combined with enhanced adsorption of the compounds by the cooled fiber. The precision of HS-SPME, expressed as the relative standard deviation and the linearity of the regression lines, is increased for more hydrophobic compounds (Kow>501) by simultaneous direct fiber cooling and freezing of analyte solution. Background contamination during analysis is reduced significantly by avoiding the use of organic solvents.  相似文献   

14.
Traces of microbial volatile organic compounds (MVOCs) in air can indicate the presence of growth of moulds in the indoor environment. Ion-mobility spectrometry is a very promising method for detection of these MVOCs, because of its high sensitivity. For development of an in-situ method for detection of MVOCs, a portable ion-mobility spectrometer (IMS) was used and test gases of 14 MVOCs and their respective mixtures were investigated. IMS spectra were recorded as a function of concentration of MVOCs in air. Drift time and mobility of reactant ions formed in positive polarity mode were determined and correlated with the mass-to-charge ratio (m/z) of the MVOCs investigated. The estimated detection limit has a specific value for each MVOC and is in the range 3 to 96 μg m−3 (1 to 52 ppbV). Indoor trials show that IMS can indicate hidden mould growth.  相似文献   

15.
Biodiversity of volatile organic compounds from five French ferns   总被引:1,自引:0,他引:1  
Five French ferns belonging to different families were investigated for volatile organic compounds (VOC) by GC-MS using organic solvent extraction. Fifty-five VOC biosynthesized from the shikimic, lipidic and terpenic pathways including monoterpenes, sesquiterpenes and carotenoid-type compounds were identified. The main volatile compound of Adiantum capillus-veneris L. (Pteridaceae) was (E)-2-decenal with a plastic or "stink bug" odor. The volatile profiles of Athyrium filix-femina (L.) Roth (Woodsiaceae) and Blechnum spicant (L.) Roth (Blechnaceae) showed similarities, with small amounts of isoprenoids and the same main volatile compounds, i.e., 2-phenylethanal (odor of lilac and hyacinth) and 1-octen-3-ol (mushroom-like odor). The main volatile compound of Dryopteris filix-mas (L.) Schott (Dryopteridaceae) was (E)-nerolidol with a woody or fresh bark note. Polyketides, as acylfilicinic acids, were mainly identified in this fern. Oreopteris limbosperma (Bellardi ex. All.) J. Holub (Thelypteridaceae), well-known for its lemon smell, contained the highest biodiversity of VOC. Eighty percent of the volatiles was issued from the terpenic pathway. The main volatiles were (E)-nerolidol, alpha-terpineol, beta-caryophyllene and other minor monoterpenes (for example, linalool, pinenes, limonene, and gamma-terpinen-7-al). It was also the fern with the highest number of carotenoid-type derivatives, which were identified in large amounts. Our results were of great interest underlying new industrial valorisation for ferns based on their broad spectrum of volatiles.  相似文献   

16.
Volatile organic compounds (VOCs) of nine Tuber species and two corresponding forms are identified via solid-phase microextraction-gas chromatography-mass spectrometry analysis. Seventy-five compounds are identified. The most abundant are dimethylsulphide, 2- and 3-methylbutanal, 2-methylpropanol, and butanone.  相似文献   

17.
Low temperature GC coupled on-line with ICP-MS was used to identify volatile metal and metalloid compounds in gases and condensates from a domestic waste deposit. Seven tin species could be identified by external standard addition and further volatile compounds of tin, bismuth, mercury, arsenic, antimony and tellurium could be found by boiling point calibration, respectively. Some technical and methodical concepts towards quantification of the results are indicated.  相似文献   

18.
Due to the versatility of present day microcontroller boards and open source development environments, new analytical chemistry devices can now be built outside of large industry and instead within smaller individual groups. While there are a wide range of commercial devices available for detecting and identifying volatile organic compounds (VOCs), most of these devices use their own proprietary software and complex custom electronics, making modifications or reconfiguration of the systems challenging. The development of microprocessors for general use, such as the Arduino prototyping platform, now enables custom chemical analysis instrumentation. We have created an example system using commercially available parts, centered around on differential mobility spectrometer (DMS) device. The Modular Reconfigurable Gas Chromatography - Differential Mobility Spectrometry package (MR-GC-DMS) has swappable components allowing it to be quickly reconfigured for specific application purposes as well as broad, generic use. The MR-GC-DMS has a custom user-friendly graphical user interface (GUI) and precisely tuned proportional-integral-derivative controller (PID) feedback control system managing individual temperature-sensitive components. Accurate temperature control programmed into the microcontroller greatly increases repeatability and system performance. Together, this open-source platform enables researchers to quickly combine DMS devices in customized configurations for new chemical sensing applications.  相似文献   

19.
20.
In this paper, we report multiplex SERS based VOCs detection with a leaning nano-pillar substrate. The VOCs analyte molecules adsorbed at the tips of the nano-pillars produced SERS signal due to the field enhancement occurring at the localized surface plasmon hot spots between adjacent leaning nano-pillars. In this experiment, detections of acetone and ethanol vapor at different concentrations were demonstrated. The detection limits were found to be 0.0017 ng and 0.0037 ng for ethanol and acetone vapor molecules respectively. Our approach is a non-labeling method such that it does not require the incorporation of any chemical sensing layer for the enrichment of gas molecules on sensor surface. The leaning nano-pillar substrate also showed highly reproducible SERS signal in cyclic VOCs detection, which can reduce the detection cost in practical applications. Further, multiplex SERS detection on different combination of acetone and ethanol vapor was also successfully demonstrated. The vibrational fingerprints of molecular structures provide specific Raman peaks for different VOCs contents. To the best of our knowledge, this is the first multiplex VOCs detection using SERS. We believe that this work may lead to a portable device for multiplex, specific and highly sensitive detection of complex VOCs samples that can find potential applications in exhaled breath analysis, hazardous gas analysis, homeland security and environmental monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号