首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We describe a numerical-analytical algorithm to solve the boundary-value problem for the integrodifferential equation of particle transport in a plane homogeneous medium. The general scheme of approximate solution of this problem is based on its reduction to the solution of some integral equation by summator operators of function approximation theory. Solvability conditions are established for the approximate equations and the algorithm errors are estimated. Working formulas are presented for the algorithm implemented in the form of a computer program. The summator operators in this algorithm are the algebraic interpolation operators with nodes at the extremal points of Chebyshev polynomials of first kind.Translated from Vychislitel'naya i Prikladnaya Matematika, No. 62, pp. 69–76, 1987.  相似文献   

2.
This paper presents an accurate numerical method for solving fractional Riccati differential equation (FRDE). The proposed method so called fractional Chebyshev finite difference method (FCheb-FDM). In this technique, we approximate FRDE with a finite dimensional problem. The method is based on the combination of the useful properties of Chebyshev polynomials approximation and finite difference method. The Caputo fractional derivative is replaced by a difference quotient and the integral by a finite sum. By this method the given problem is reduced to a problem for solving a system of algebraic equations, and by solving this system, we obtain the solution of FRDE. Special attention is given to study the convergence analysis and estimate an error upper bound of the obtained approximate formula. Illustrative examples are included to demonstrate the validity and applicability of the proposed technique.  相似文献   

3.
Summary The present paper is concerned with finding an effective polynomial solution to a class of dual integral equations which arise in many mixed boundary value problems in the theory of elasticity. The dual integral equations are first transformed into a Fredholm integration equation of the second kind via an auxiliary function, which is next reduced to an infinite system of linear algebraic equations by representing the unknown auxiliary function in the form of an infinite series of Jacobi polynomials. The approximate solution of this infinite system of equations can be obtained by a suitable truncation. It is shown that the unknown function involving the dual integral equations can also be expressed in the form of an infinite series of Jacobi polynomials with the same expansion coefficients with no numerical integration involved. The main advantage of the present approach is that the solution of the dual integral equations thus obtained is numerically more stable than that obtained by reducing themdirectly into an infinite system of equations, insofar as the expansion coefficients are determined essentially by solving asecond kind integral equation.  相似文献   

4.
The problem of torsional oscillations of a stamp that is linked with an elastic stratum which contains a cylindrical cavity is considered. The problem is formulated in the form of conjugate integral equations that are related to the integral Weber transforms. The conjugate equations are reduced to an equivalent Fredholm equation of the second kind.Translated from Dinamicheskie Sistemy, No. 9, pp. 54–59, 1990.  相似文献   

5.
We establish convergence rates for a method of approximate solution of certain singular integral equations. The method considered involves an expansion of the kernel of the equation in terms of Chebyshev polynomials.  相似文献   

6.
A method is developed for the formal solution of an important class of triple integral equations involving Bessel functions. The solution of the triple integral equations is reduced to two simultaneous Fredholm integral equations and the results obtained are simpler than those of other authors and also superior for the purposes of solution by iteration. In the same manner the formal solution of triple series equations involving associated Legendre polynomials is presented. The solution of the problem is reduced to that of solving a Fredholm integral equation of the first kind. Finally to illustrate the application of the results an electrostatic problem is discussed.  相似文献   

7.
The plane problem of the evolution of a hydraulic fracture crack in an elastic medium is considered. It is established that a self-similar solution is only possible at a constant rate of fluid injection. The solution for the value of the crack opening is presented in the form of a series expansion in Chebyshev polynomials of the second kind, and expansion coefficients are obtained as a solution of the algebraic set of equations which arise when projecting the balance equation for injected fluid mass on Chebyshev polynomials. When there is no part of the region unfilled with fluid (a fluid lag), the gradient of the crack opening at the crack tip turns out to be singular when the finiteness of the medium stress intensity factor is taken into account. According to the estimate made, the rate of convergence of the series expansion for the solution in Chebyshev polynomials is fairly rapid for a small injection intensity.  相似文献   

8.
We consider, in this article, a numerical study of a certain class of Singular Cauchy integral equations with random nonhomogeneous term. The method is based on an approximation of the solution by random Chebyshev polynomials. Numerical results, based on simulation, of random forcing term are given and they are used (i) to determine the distribution of the random coefficients of the Chebyshev polynomial and (ii) to compare the mean of the random solution with the solution of the mean equation (which of course is deterministic)  相似文献   

9.
Summary. To solve 1D linear integral equations on bounded intervals with nonsmooth input functions and solutions, we have recently proposed a quite general procedure, that is essentially based on the introduction of a nonlinear smoothing change of variable into the integral equation and on the approximation of the transformed solution by global algebraic polynomials. In particular, the new procedure has been applied to weakly singular equations of the second kind and to solve the generalized air foil equation for an airfoil with a flap. In these cases we have obtained arbitrarily high orders of convergence through the solution of very-well conditioned linear systems. In this paper, to enlarge the domain of applicability of our technique, we show how the above procedure can be successfully used also to solve the classical Symm's equation on a piecewise smooth curve. The collocation method we propose, applied to the transformed equation and based on Chebyshev polynomials of the first kind, has shown to be stable and convergent. A comparison with some recent numerical methods using splines or trigonometric polynomials shows that our method is highly competitive. Received October 1, 1998 / Revised version received September 27, 1999 / Published online June 21, 2000  相似文献   

10.
The paper presents a theoretical study of hypersingular equations of the general form for problems of electromagnetic-wave diffraction on open surfaces of revolution. Justification of the Galerkin is given. The method is based on the separation of the principal term and its analytic inversion. The inverse of the principal operator is completely continuous. On the basis of this result, the equivalence of the initial equation to a Fredholm integral equation of the second kind is proven. An example of numerical solution with the use of Chebyshev polynomials of the second kind is considered.  相似文献   

11.
The displacement discontinuity method is extended to study the fracture behavior of interface cracks in one-dimensional hexagonal quasicrystal coating subjected to anti-plane loading. The Fredholm integral equation of the first kind is established in terms of displacement discontinuities. The fundamental solution for anti-plane displacement discontinuity is derived by the Fourier transform method. The singularity of stress near the crack front is analyzed, and Chebyshev polynomials of the second kind are numerically adopted to solve the integral equations. The displacement discontinuities across crack faces, the stress intensity factors, and the energy release rate are calculated from the coefficients of Chebyshev polynomials. In combination with numerical simulations, a comprehensive study of influencing factors on the fracture behavior is conducted.  相似文献   

12.
Closed form solution of quadruple series equations involving cosine kernels has been obtained by reducing the series equations into triple Abel's type integral equations which in turn are reduced to a single integral equation. Making use of finite Hilbert transforms the solution of the single integral equation is obtained in closed form. This solution is used to solve an electrostatic problem. The results of this paper have also been used in a two-dimensional elastostatic problem under anti-plane shear and the effect of rigid line inclusions with thickness on the Griffith cracks has been examined. The expressions for shear stress and stress intensity factor at the tip of the crack are obtained. Finally, some numerical results for the stress intensity factor and shear stress distribution are obtained.  相似文献   

13.
In this article we propose a numerical scheme to solve the one‐dimensional hyperbolic telegraph equation. The method consists of expanding the required approximate solution as the elements of shifted Chebyshev polynomials. Using the operational matrices of integral and derivative, we reduce the problem to a set of linear algebraic equations. Some numerical examples are included to demonstrate the validity and applicability of the technique. The method is easy to implement and produces very accurate results. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

14.
提出了一种新的求解第二类线性Volterra型积分方程的Chebyshev谱配置方法.该方法分别对方程中积分部分的核函数和未知函数在Chebyshev-Gauss-Lobatto点上进行插值,通过Chebyshev-Legendre变换,把插值多项式表示成Legendre级数形式,从而将积分转换为内积的形式,再利用Legendre多项式的正交性进行计算.利用Chebyshev插值算子在不带权范数意义下的逼近结果,对该方法在理论上给出了L∞范数意义下的误差估计,并通过数值算例验证了算法的有效性和理论分析的正确性.  相似文献   

15.
The operational matrices of left Caputo fractional derivative, right Caputo fractional derivative, and Riemann–Liouville fractional integral, for shifted Chebyshev polynomials, are presented and derived. We propose an accurate and efficient spectral algorithm for the numerical solution of the two-sided space–time Caputo fractional-order telegraph equation with three types of non-homogeneous boundary conditions, namely, Dirichlet, Robin, and non-local conditions. The proposed algorithm is based on shifted Chebyshev tau technique combined with the derived shifted Chebyshev operational matrices. We focus primarily on implementing the novel algorithm both in temporal and spatial discretizations. This algorithm reduces the problem to a system of algebraic equations greatly simplifying the problem. This system can be solved by any standard iteration method. For confirming the efficiency and accuracy of the proposed scheme, we introduce some numerical examples with their approximate solutions and compare our results with those achieved using other methods.  相似文献   

16.
The classical differential equations of Hermite, Legendre, and Chebyshev are well known for their polynomial solutions. These polynomials occur in the solutions to numerous problems in applied mathematics, physics, and engineering. However, since these equations are of second order, they also have second linearly independent solutions that are not polynomials. These solutions usually cannot be expressed in terms of elementary functions alone. In this paper, the classical differential equations of Hermite, Legendre, and Chebyshev are studied when they have a forcing term x M on the right-hand side. It will be shown that for each equation, choosing a certain initial condition is a necessary and sufficient condition for ensuring a polynomial solution. Once this initial condition is determined, the exact form of the polynomial solution is presented.  相似文献   

17.
The method of El-Gendi [El-Gendi SE. Chebyshev solution of differential integral and integro-differential equations. J Comput 1969;12:282–7; Mihaila B, Mihaila I. Numerical approximation using Chebyshev polynomial expansions: El-gendi’s method revisited. J Phys A Math Gen 2002;35:731–46] is presented with interface points to deal with linear and non-linear convection–diffusion equations.The linear problem is reduced to two systems of ordinary differential equations. And, then, each system is solved using three-level time scheme.The non-linear problem is reduced to three systems of ordinary differential. Each one of these systems is, then, solved using three-level time scheme. Numerical results for Burgers’ equation and modified Burgers’ equation are shown and compared with other methods. The numerical results are found to be in good agreement with the exact solutions.  相似文献   

18.
On the basis of the expansion formulas of the vector solutions of the Lame equations in cylindrical and spherical coordinates, the problem of a circular stamp is formulated in the form of an integro-algebraic system of equations. By the method of orthogonal polynomials, it is reduced to a collection of infinite systems of linear algebraic equations, for which the method of reduction is justified. Formulas for the normal and tangential stresses under the stamp are given.Translated from Teoreticheskaya i Prikladnaya Mekhanika, No. 18, pp. 14–20, 1987.  相似文献   

19.
Two approaches are proposed to determine an initial approximation for the coefficients of an expansion of the solution to a Cauchy problem for ordinary differential equations in the form of series in shifted Chebyshev polynomials of the first kind. This approximation is used in an analytical method to solve ordinary differential equations using orthogonal expansions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号