首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 443 毫秒
1.
The existence of periodic solutions of the Navier-Stokes equations in function spaces based upon (L p())nis proved. The paper has three parts, (a) A proof of the existence of strong solutions of the evolution equation with initial data in a solenoidal subspace of (L p())n. (b) The evolution equation is restricted to a space of time periodic functions and a Fredholm integral equation on this space is formed. The Lyapunov-Schmidt method is applied to prove the existence of bifurcating time periodic solutions in the presence of symmetry. (c) The theory is applied to the bifurcation of periodic solutions from planar Poiseuille flow in the presence of symmetry (SO(2) x O(2) x S 1) yielding new results for this classic problem. The O(2) invariance is in the spanwise direction. With the periodicity in time and in the streamwise direction we find that generically there is a bifurcation to both oblique travelling waves and to travelling waves that are stationary in the spanwise direction. There are however points of degeneracy on the neutral surface. A numerical method is used to identify these points and an analysis in the neighborhood of the degenerate points yields more complex periodic solutions as well as branches of quasi-periodic solutions.  相似文献   

2.
Übersicht Es werden verschiedene Bedingungen aufgestellt, die es erlauben, die durch die beiden (Systeme von) nichtlinearen DifferentialgleichungenA (u, ) = q, B (u, ) = und Randbedingungen zusammen mit den nichtlinearen algebraischen Relationenq = C(u, ), = D(u, ) beschriebene Aufgabe durch äquivalente Variationsprobleme zu ersetzen. Dabei zeigt sich ein enger Zusammenhang mit den in der Festkörpermechanik wohlbekannten Prinzipien der virtuellen Verschiebungen und der virtuellen Kräfte. Die auf systematischem Weg konstruierten Variationsfunktionale enthalten viele in der Physik bekannte Funktionale als Sonderfälle, insbesondere jene, die in der Elastomechanik nach Green, Castigliano, Hellinger, Reißner, Hu und Washizu benannt werden.
Summary In this paper there are established various conditions which allow a variational formulation of the problem described by the two (systems of) nonlinear differential equationsA(u, ) = q, B(u, ) = and boundary conditions together with the nonlinear algebraic relationsq = C(u, ), = D(u, ). Besides a close relationship is revealed to the principles of virtual displacements and virtual forces which are wellknown in solid mechanics. The systematically constructed variational functional contain many functionals in physics as special cases, mainly those of Green, Castigliano, Hellinger, Reißner, Hu and Washizu in elastomechanics.
  相似文献   

3.
We study a model Boltzmann equation closely related to the BGK equation using a steepest-descent method in the Wasserstein metric, and prove global existence of energy-and momentum-conserving solutions. We also show that the solutions converge to the manifold of local Maxwellians in the large-time limit, and obtain other information on the behavior of the solutions. We show how the Wasserstein metric is natural for this problem because it is adapted to the study of both the free streaming and the collisions.  相似文献   

4.
Zusammenfassung Bei Blutergeben sich aus Messungen an verschiedenen Couette-Systemen verschiedene Verläufe für die Schubspannungsfunktion, wenn man Wandhaften annimmt. Es wird daher ein Wandeffekt angenommen, bei dem die unentmischte Blutsuspension unmittelbar auf der Wand gleitet. Die Wandgleitgeschwindigkeit wird als Funktion der Wandschubspannung angesetzt und aus Messungen an drei verschiedenen Couette-Systemen bestimmt.Aus der so ermittelten Wandgleitgeschwindigkeit kann die Dicke eines Blutplasmafilmes an der Wand abgeschätzt werden. Sie ergibt sich zu einigen µm. Dadurch wird die angenommene Modellvorstellung für den Wandeffekt bestätigt.Bei Berücksichtigung der ermittelten Wandgleitgeschwindigkeit ergibt sich für die Schubspannungsfunktion aus Messungen an verschiedenen Couette-Systemen derselbe Verlauf. Bei Annahme von Wandhaften ergeben sich dagegen deutlich zu hohe Werte für die Schubspannungsfunktion.
Summary Measurements with blood in different Couette-Systems are resulting in different shear functionsf() if no wall-slip effect is assumed.Therefore we use the model that the homogeneous blood suspension is sliding directly on the wall. The wall-slip velocity is introduced as a function of the wall shear stress. This wall-slip function can be determined from measurements with three different Couette-Systems.After the wall-slip function is determined the thickness of a plasma film on the wall can be estimated. One gets a thickness of a few µms. Thus the assumed model for the wall effect is confirmed. Measurements with different Couette-Systems evaluated according to the wall-slip model, are leading to the same shear functionf().

D Rohrdurchmesser - f() Schubspannungsfunktion - f() mittlerer Fehler vonf() - h Länge des Couette-Spaltes - M in der Couette-Strömung übertragenes Drehmoment - M ij Meßwerte fürM - Mittelwert derM ij - mittlerer Fehler von - r a ,r i äußerer bzw. innerer Begrenzungsradius eines Couette-Systems - r 1,r 2,r 3 Begrenzungsradien der Couette-Systeme I, II, III - s Spaltweite im Couette-System - v w Wandgleitgeschwindigkeit - Schergeschwindigkeit - Dicke des Wandfilms - ( w) Funktion des Wandgleitens - Viskosität - Schubspannungsfeld im Couette-System - 1, 2, 3 Schubspannungen an den Stellenr 1,r 2,r 3 in den Couette-Systemen I, II, III bei gleichem Moment - w Wandschubspannung - Winkelgeschwindigkeitsdifferenz zwischen äußerem und innerem Zylinder im Couette-System - i vorgegebene Werte für - mittlerer Fehler von - I, II, III für die Couette-Systeme I, II, III - I, II, III mittlere Fehler von I, II, III Vortrag, gehalten auf der Jahrestagung der Deutschen Rheologischen Gesellschaft in Aachen vom 5.–7. März 1979.Mit 5 Abbildungen  相似文献   

5.
We consider singularly perturbed systems , such that=f(, o, 0). o m , has a heteroclinic orbitu(t). We construct a bifurcation functionG(, ) such that the singular system has a heteroclinic orbit if and only ifG(, )=0 has a solution=(). We also apply this result to recover some theorems that have been proved using different approaches.  相似文献   

6.
This paper studies the generalized Lorenz canonical form of dynamical systems introduced by elikovský and Chen [International Journal of Bifurcation and Chaos 12(8), 2002, 1789]. It proves the existence of a heteroclinic orbit of the canonical form and the convergence of the corresponding series expansion. The ilnikov criterion along with some technical conditions guarantee that the canonical form has Smale horseshoes and horseshoe chaos. As a consequence, it also proves that both the classical Lorenz system and the Chen system have ilnikov chaos. When the system is changed into another ordinary differential equation through a nonsingular one-parameter linear transformation, the exact range of existence of ilnikov chaos with respect to the parameter can be specified. Numerical simulation verifies the theoretical results and analysis.  相似文献   

7.
We study travelling wave solutions for the model developed in Part 1 of this paper. We develop and discuss a condition characterizing their existence. The possibility of finiteness is investigated. We consider the convergence to various limit cases and point out their different qualitative behaviour. Numerical examples are discussed.This work was supported by the EC project Filtration and Nonlinear Diffusion Processes (Contract No. SC1-0019-C(TT)).  相似文献   

8.
In this paper the flow is studied of an incompressible viscous fluid through a helically coiled annulus, the torsion of its centre line taken into account. It has been shown that the torsion affects the secondary flow and contributes to the azimuthal component of velocity around the centre line. The symmetry of the secondary flow streamlines in the absence of torsion, is destroyed in its presence. Some stream lines penetrate from the upper half to the lower half, and if is further increased, a complete circulation around the centre line is obtained at low values of for all Reynolds numbers for which the analysis of this paper is valid, being the ratio of the torsion of the centre line to its curvature.Nomenclature A =constant - a outer radius of the annulus - b unit binormal vector to C - C helical centre line of the pipe - D rL - g 1000 - K Dean number=Re2 - L 1+r sin - M (L 2+ 2 r 2)1/2 - n unit normal vector to C - P, P pressure and nondimensional pressure - p 0, p pressures of O(1) and O() - Re Reynolds number=aW 0/ - (r, , s), (r, , s) coordinates and nondimensional coordinates - nonorthogonal unit vectors along the coordinate directions - r 0 radius of the projection of C - t unit tangent vector to C - V r, V , V s velocity components along the nonorthogonal directions - Vr, V, V s nondimensional velocity components along - W 0 average velocity in a straight annulus Greek symbols , curvature and nondimensional curvature of C - U, V, W lowest order terms for small in the velocity components along the orthogonal directions t - r, , s first approximations to V r , V, V s for small - =/=/ - kinematic viscosity - density of the fluid - , torsion and nondimensional torsion of C - , stream function and nondimensional stream function - nondimensional streamfunction for U, V - a inner radius of the annulus After this paper was accepted for publication, a paper entitled On the low-Reynolds number flow in a helical pipe, by C.Y. Wang, has appeared in J. Fluid. Mech., Vol 108, 1981, pp. 185–194. The results in Wangs paper are particular cases of this paper for =0, and are also contained in [9].  相似文献   

9.
This paper is concerned with a class of singular equations modelling the combustion of premixed gases in periodic media. The model involves two parameters: the period of the medium |L| and a singular parameter related to the activation energy. The existence of pulsating travelling fronts for fixed and |L| was proved by Berestycki & Hamel in [BH]. In the present paper, we investigate the behaviour of such solutions when More precisely, we establish that pulsating travelling fronts behave like travelling waves, when the period |L| is small and . We also study the convergence of the solution, as goes to zero (and |L| is fixed), toward a solution of a free boundary problem.  相似文献   

10.
We consider the parametrized family of equations tt ,u- xx u-au+u 2 2 u=O,x(0,L), with Dirichlet boundary conditions. This equation has finite-dimensional invariant manifolds of solutions. Studying the reduced equation to a four-dimensional manifold, we prove the existence of transversal homoclinic orbits to periodic solutions and of invariant sets with chaotic dynamics, provided that =2, 3, 4,.... For =1 we prove the existence of infinitely many first integrals pairwise in involution.  相似文献   

11.
In this paper we investigate global bifurcations in the motion of parametrically excited, damped thin plates. Using new mathematical results by Kovai and Wiggins in finding homoclinic and heteroclinic orbits to fixed points that are created in a resonance resulting from perturbation, we are able to obtain explicit conditions under which Silnikov homoclinic orbits occur. Furthermore, we confirm our theoretical predictions by numerical simulations.  相似文献   

12.
The classical solution for an isotropic elastic wedge loaded by uniform tractions on the sides of the wedge becomes infinite everywhere in the wedge when the wedge angle 2 equals , 2 or 2* where tan 2* = 2*. When the wedge is loaded by a concentrated couple at the wedge apex the solution also becomes infinite at 2 = 2*. A similar situation occurs when the wedge is anisotropic except that 2* is governed by a different equation and depends on material properties. Solutions which do not become infinite everywhere in the wedge are available for isotropic elastic wedges. In this paper we present solutions for the anisotropic elastic wedge at critical wedge angles. The main feature of the solutions obtained here is that they are in a real form even though Stroh's complex formalism is employed.  相似文献   

13.
Summary The subject of this article is the thermodynamics of perfect elastic-plastic materials undergoing unidimensional, but not necessarily isothermal, deformations. The first and second laws of thermodynamics are employed in a form in which only the following quantities appear: the temperature , the elastic strain e, the plastic strain p, the elastic modulus (gq), the yield strain (gq), the heat capacity (e, p,), the latent elastic heat e(e, p, ), and the latent plastic heat p(e, p, ). Relations among the response functions , , , e, and p are derived, and it is shown that a set of these relations gives a necessary and sufficient condition for compliance with the laws of thermodynamics. Some observations are made about the existence and uniqueness of energy and entropy as functions of state.Dedicated to Clifford Truesdell on the occasion of his 60th birthdayThis research was supported by the U.S. National Science Foundation.  相似文献   

14.
The paper reports the outcome of a numerical study of fully developed flow through a plane channel composed of ribleted surfaces adopting a two-equation turbulence model to describe turbulent mixing. Three families of riblets have been examined: idealized blade-type, V-groove and a novel U-form that, according to computations, achieves a superior performance to that of the commercial V-groove configuration. The maximum drag reduction attained for any particular geometry is broadly in accord with experiment though this optimum occurs for considerably larger riblet heights than measurements indicate. Further explorations bring out a substantial sensitivity in the level of drag reduction to the channel Reynolds number below values of 15 000 as well as to the thickness of the blade riblet. The latter is in accord with the trends of very recent, independent experimental studies.Possible shortcomings in the model of turbulence are discussed particularly with reference to the absence of any turbulence-driven secondary motions when an isotropic turbulent viscosity is adopted. For illustration, results are obtained for the case where a stress transport turbulence model is adopted above the riblet crests, an elaboration that leads to the formation of a plausible secondary motion sweeping high momentum fluid towards the wall close to the riblet and thereby raising momentum transport.Nomenclature c f Skin friction coefficient - c f Skin friction coefficient in smooth channel at the same Reynolds number - k Turbulent kinetic energy - K + k/ w - h Riblet height - S Riblet width - H Half height of channel - Re Reynolds number = volume flow/unit width/ - Modified turbulent Reynolds number - R t turbulent Reynolds numberk 2/ - P k Shear production rate ofk, t (U i /x j + U j /x i ) U i /x j - dP/dz Streamwise static pressure gradient - U i Mean velocity vector (tensor notation) - U Friction velocity, w/ where w=–H dP/dz - W Mean velocity - W b Bulk mean velocity through channel - y + yU /v. Unless otherwise stated, origin is at wall on trough plane of symmetry - Kinematic viscosity - t Turbulent kinematic viscosity - Turbulence energy dissipation rate - Modified dissipation rate – 2(k 1/2/x j )2 - Density - k , Effective turbulent Prandtl numbers for diffusion ofk and   相似文献   

15.
T. Dabak  O. Yucel 《Rheologica Acta》1986,25(5):527-533
A method is proposed for determining the shear viscosity behavior of highly concentrated suspensions at low and high shear-rates through the use of a formulation that is a function of three parameters signifying the effects of particle size distribution. These parameters are the intrinsic viscosity [], a parametern that reflects the level of particle association at the initiation of motion and the maximum packing concentration m. The formulation reduces to the modified Eilers equation withn = 2 for high shear rates. An analytical method was used for the calculation of maximum packing concentration which was subsequently correlated with the experimental values to account for the surface induced interaction of particles with the fluid. The calculated values of viscosities at low and high shear-rates were found to be in good agreement with various experimental data reported in literature. A brief discussion is also offered on the reliability of the methods of measuring the maximum packing concentration. r = /0 relative viscosity of the suspension - volumetric concentration of solids - k n coefficient which characterizes a specific effect of particle interactions - m maximum packing concentration - r,0 relative viscosity at low shear-rates - [] intrinsic viscosity - n, n parameter that reflects the level of particle interactions at low and high shear-rates, respectively - r, relative viscosity at high shear-rates - (m)s, (m)i, (m)l packing factors for small, intermediate and large diameter classes - v s, vi, vl volume fractions of small, intermediate and large diameter classes, respectively - si, sl coefficient to be used in relating a smaller to an intermediate and larger particle group, respectively - is, il coefficient to be used in relating an intermediate to a smaller and larger particle group, respectively - ls, li coefficient to be used in relating a larger to a smaller and intermediate particle group, respectively - m0 maximum packing concentration for binary mixtures - m,e measured maximum packing concentration - m,c calculated maximum packing concentration  相似文献   

16.
In a previous derivation of Darcy's law, the closure problem was presented in terms of an integro-differential equation for a second-order tensor. In this paper, we show that the closure problem can be transformed to a set of Stokes-like equations and we compare solutions of these equations with experimental data. The computational advantages of the transformed closure problem are considerable.Roman Letters A interfacial area of the- interface contained within the macroscopic system, m2 - A e area of entrances and exits for the-phase contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A e area of entrances and exits for the-phase contained within the averaging volume, m2 - B second-order tensor used to respresent the velocity deviation - b vector used to represent the pressure deviation, m–1 - C second-order tensor related to the permeability tensor, m–2 - D second-order tensor used to represent the velocity deviation, m2 - d vector used to represent the pressure deviation, m - g gravity vector, m/s2 - I unit tensor - K C –1,–D, Darcy's law permeability tensor, m2 - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the-phase, m - l i i=1, 2, 3, lattice vectors, m - n unit normal vector pointing from the-phase toward the-phase - n e outwardly directed unit normal vector at the entrances and exits of the-phase - p pressure in the-phase, N/m 2 - p intrinsic phase average pressure, N/m2 - p p , spatial deviation of the pressure in the-phase, N/m2 - r position vector locating points in the-phase, m - r 0 radius of the averaging volume, m - t time, s - v velocity vector in the-phase, m/s - v intrinsic phase average velocity in the-phase, m/s - v phase average or Darcy velocity in the \-phase, m/s - v v , spatial deviation of the velocity in the-phase m/s - V averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 Greek Letters V /V volume fraction of the-phase - mass density of the-phase, kg/m3 - viscosity of the-phase, Nt/m2  相似文献   

17.
In this paper we consider the asymptotic behavior of solutions of the quasilinear equation of filtration as t. We prove that similar solutions of the equation u t = (u )xx asymptotically represent solutions of the Cauchy problem for the full equation u t = [(u)]xx if (u) is close to u for small u.  相似文献   

18.
Stokes flow in a deformable medium is considered in terms of an isotropic, linearly elastic solid matrix. The analysis is restricted to steady forms of the momentum equations and small deformation of the solid phase. Darcy's law can be used to determine the motion of the fluid phase; however, the determination of the Darcy's law permeability tensor represents part of the closure problem in which the position of the fluid-solid interface must be determined.Roman Letters A interfacial area of the- interface contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A e area of entrances and exits for the-phase contained within the macroscopic system, m2 - A * interfacial area of the- interface contained within a unit cell, m2 - A e * area of entrances and exits for the-phase contained within a unit cell, m2 - E Young's modulus for the-phase, N/m2 - e i unit base vectors (i = 1, 2, 3) - g gravity vector, m2/s - H height of elastic, porous bed, m - k unit base vector (=e 3) - characteristic length scale for the-phase, m - L characteristic length scale for volume-averaged quantities, m - n unit normal vector pointing from the-phase toward the-phase (n = -n ) - p pressure in the-phase, N/m2 - P p g·r, N/m2 - r 0 radius of the averaging volume, m - r position vector, m - t time, s - T total stress tensor in the-phase, N/m2 - T 0 hydrostatic stress tensor for the-phase, N/m2 - u displacement vector for the-phase, m - V averaging volume, m3 - V volume of the-phase contained within the averaging volume, m3 - v velocity vector for the-phase, m/s Greek Letters V /V, volume fraction of the-phase - mass density of the-phase, kg/m3 - shear coefficient of viscosity for the-phase, Nt/m2 - first Lamé coefficient for the-phase, N/m2 - second Lamé coefficient for the-phase, N/m2 - bulk coefficient of viscosity for the-phase, Nt/m2 - T T 0 , a deviatoric stress tensor for the-phase, N/m2  相似文献   

19.
The paper is concerned with the asymptotic behavior as t of solutions u(x,t) of the equation in the case f(0)=f(1)=0, with f(u) non-positive for u(>0) sufficiently close to zero and f(u) non-negative for u(<1) sufficiently close to 1. This guarantees the uniqueness (but not the existence) of a travelling front solution u;U(x–ct), U(–);0, U();, and it is shown in essence that solutions with monotonic initial data converge to a translate of this travelling front, if it exists, and to a stacked combination of travelling fronts if it does not. The approach is to use the monotonicity to take u and t as independent variables and p = u x as the dependent variable, and to apply ideas of sub- and super-solutions to the diffusion equation for p.This research was sponsored by the United States Army under Contract No. DAAG29-75-C-0024.  相似文献   

20.
The qualitative behavior of solutions of the mixed problem utt = u-a(x)ut in IR x , u=0 on IR x , is studied in the case when a>0 and IRn is bounded. Roughly speaking, if aamin>0, then solutions decay at least as fast as exp t( –1/2amin), with the possible exception of a finite dimensional set of smooth solutions whose existence is associated with a phenomenon of overdamping. If amax is sufficiently small, depending on , then no overdamping occurs.Partially supported by NSF grant NSF GP 34260.This work was partially supported by the National Science Foundation under Grant No. GP 34260  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号