首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bacteria possess surface properties, related to their charge, hydrophobicity and Lewis acid/base characteristics, that are involved in the attachment processes of microorganisms to surfaces. Fermentation bulks and food matrixes are complex heterogeneous media containing various components with different physicochemical characteristics. The aim of the present study was to investigate whether (i) bacteria present in a food matrix, interacted physicochemically at their surface level with the other constituents and (ii) the diversity of bacterial surface properties could result in a diversity of microbial adhesion to components and thus in a diversity of tolerance to toxic compounds. The surface properties of 20 lactic acid bacteria were characterized by the MATS method showing their relatively hydrophilic and various basic characteristics. The results obtained from a set of representative strains showed that (i) the strains with higher affinity for apolar solvents adsorbed more to lipids and hydrophobic compounds, (ii) the more the strains adsorbed to a toxic solvent, the less they were tolerant to this solvent. A diversity of bacterial surface properties was observed for the strains in the same species showing the importance of choosing bacteria according to their surface properties in function of technological objectives.  相似文献   

2.
Bacteria possess surface properties, related to their charge, hydrophobicity and Lewis acid/base characteristics, that are involved in the attachment processes of microorganisms to surfaces. Fermentation bulks and food matrixes are complex heterogeneous media containing various components with different physicochemical characteristics. The aim of the present study was to investigate whether (i) bacteria present in a food matrix, interacted physicochemically at their surface level with the other constituents and (ii) the diversity of bacterial surface properties could result in a diversity of microbial adhesion to components and thus in a diversity of tolerance to toxic compounds. The surface properties of 20 lactic acid bacteria were characterized by the MATS method showing their relatively hydrophilic and various basic characteristics. The results obtained from a set of representative strains showed that (i) the strains with higher affinity for apolar solvents adsorbed more to lipids and hydrophobic compounds, (ii) the more the strains adsorbed to a toxic solvent, the less they were tolerant to this solvent. A diversity of bacterial surface properties was observed for the strains in the same species showing the importance of choosing bacteria according to their surface properties in function of technological objectives.  相似文献   

3.
Bioleaching is a technology for the recovery of metals from minerals by means of microorganisms, which accelerate the oxidative dissolution of the mineral by regenerating ferric ions. Bioleaching processes take place at the interface of bacteria, sulfide mineral and leaching solution. The fundamental forces between a bioleaching bacterium and mineral surface are central to understanding the intricacies of interfacial phenomena, such as bacterial adhesion or detachment from minerals and the mineral dissolution. This review focuses on the current state of knowledge in the colloidal aspect of bacteria–mineral interactions, particularly for bioleaching bacteria. Special consideration is given to the microscopic structure of bacterial cells and the atomic force microscopy technique used in the quantification of fundamental interaction forces at nanoscale.  相似文献   

4.
Coatings developed to reduce biofouling of engineered surfaces do not always perform as expected based on their native properties. One reason is that a relatively small number of highly adhesive sites, or the heterogeneity of the coated surface, may control the overall response of the system to initial bacterial deposition. It is shown here using an approach we call spectral force analysis (SFA), based on force volume imaging of the surface with atomic force microscopy, that the behavior of surfaces and coatings can be better understood relative to bacterial adhesion. The application of vapor deposited TiO2 metal oxide increased bacterial and colloid adhesion, but coating the surface with silica oxide reduced adhesion in a manner consistent with SFA based on analysis of the “stickiest” sites. Application of a TiO2-based paint to a surface produced a relatively non-fouling surface. Addition of a hydrophilic layer coating to this surface should have decreased fouling. However, it was observed that this coating actually increased fouling. Using SFA it was shown that the reason for the increased adhesion of bacteria and particles to the hydrophilic layer was that the surface produced by this coating was highly heterogeneous, resulting in a small number of sites that created a stickier surface. These results show that while it is important to manufacture surfaces with coatings that are relatively non-adhesive to bacteria, it is also essential that these coatings have a highly uniform surface chemistry.  相似文献   

5.
Over the past several decades, we have observed a very rapid development in the biotechnological use of lactic acid bacteria (LAB) in various branches of the food industry. All such areas of activity of these bacteria are very important and promise enormous economic and industrial successes. LAB are a numerous group of microorganisms that have the ability to ferment sugars into lactic acid and to produce proteolytic enzymes. LAB proteolytic enzymes play an important role in supplying cells with the nitrogen compounds necessary for their growth. Their nutritional requirements in this regard are very high. Lactic acid bacteria require many free amino acids to grow. The available amount of such compounds in the natural environment is usually small, hence the main function of these enzymes is the hydrolysis of proteins to components absorbed by bacterial cells. Enzymes are synthesized inside bacterial cells and are mostly secreted outside the cell. This type of proteinase remains linked to the cell wall structure by covalent bonds. Thanks to advances in enzymology, it is possible to obtain and design new enzymes and their preparations that can be widely used in various biotechnological processes. This article characterizes the proteolytic activity, describes LAB nitrogen metabolism and details the characteristics of the peptide transport system. Potential applications of proteolytic enzymes in many industries are also presented, including the food industry.  相似文献   

6.
Microbes have evolved sophisticated strategies to colonize biotic and abiotic surfaces. Forces play a central role in microbial cell adhesion processes, yet until recently these were not accessible to study at the molecular scale. Unlike traditional assays, atomic force microscopy (AFM) is capable to study forces in single cell surface molecules and appendages, in their biologically relevant conformation and environment. Recent AFM investigations have demonstrated that bacterial pili exhibit a variety of mechanical responses upon contact with surfaces and that cell surface adhesion proteins behave as force-sensitive switches, two phenomena that play critical roles in cell adhesion and biofilm formation. AFM has also enabled to assess the efficiency of sugars, peptides, and antibodies in blocking cell adhesion, opening up new avenues for the development of antiadhesion therapies against pathogens.  相似文献   

7.
Bacterial adhesion to surfaces mediated by specific adhesion organelles that promote infections, as exemplified by the pili of uropathogenic E. coli, is studied mostly at the level of cell–cell interactions and thereby reflects the averaged behavior of multiple pili. The role of pilus rod structure has therefore only been estimated from the outcome of experiments involving large numbers of organelles at the same time. It has, however, lately become clear that the biomechanical behavior of the pilus shafts play an important, albeit hitherto rather unrecognized, role in the adhesion process. For example, it has been observed that shafts from two different strains, even though they are similar in structure, result in large differences in the ability of the bacteria to adhere to their host tissue. However, in order to identify all properties of pilus structures that are of importance in the adhesion process, the biomechanical properties of pili must be assessed at the single‐molecule level. Due to the low range of forces of these structures, until recently it was not possible to obtain such information. However, with the development of force‐measuring optical tweezers (FMOT) with force resolution in the low piconewton range, it has lately become possible to assess forces mediated by individual pili on single living bacteria in real time. FMOT allows for a more or less detailed mapping of the biomechanical properties of individual pilus shafts, in particular those that are associated with their elongation and contraction under stress. This Mi‐ nireview presents the FMOT technique, the biological model system, and results from assessment of the biomechanical properties of bacterial pili. The information retrieved is also compared with that obtained by atomic force microscopy.  相似文献   

8.
Glycans play a vital role in modulating many physiological and pathological phenomena of microbes and humans, such as bacterial adhesion, colonization, host-microbial interactions, cancer recognition, and blood group determination. The aim of the current review is to provide an account of the functions of N-acetyl sialic acid (Neu5Ac) and galactose (Gal) residues in microbial pathology. Specifically, an overview of the biosynthesis and metabolism of Neu5Ac and Gal residues in different bacterial species will provide a better understanding of microbial pathogenesis in the human body.  相似文献   

9.
The adhesion of microbial cells to metal surfaces in aqueous media is an important phenomenon in both the natural environment and engineering systems. The adhesion of two anaerobic sulfate-reducing bacteria (Desulfovibrio desulfuricans and a local marine isolate) and an aerobe (Pseudomonas sp.) to four polished metal surfaces (i.e., stainless steel 316, mild steel, aluminum, and copper) was examined using a force spectroscopy technique with an atomic force microscope (AFM). Using a modified bacterial tip, the attraction and repulsion forces (in the nano-Newton range) between the bacterial cell and the metal surface in aqueous media were quantified. Results show that the bacterial adhesion force to aluminum is the highest among the metals investigated, whereas the one to copper is the lowest. The bacterial adhesion forces to metals are influenced by both the electrostatic force and metal surface hydrophobicity. It is also found that the physiological properties of the bacterium, namely the bacterial surface charges and hydrophobicity, also have influence on the bacteria-metal interaction. The adhesion to the metals by Pseudomonas sp. and D. desulfuricans was greater than by the marine SRB isolate. The cell-cell interactions show that there are strong electrostatic repulsion forces between bacterial cells. Cell probe atomic force microscopy has provided some useful insight into the interactions of bacterial cells with the metal surfaces.  相似文献   

10.
Besides human red blood cells (RBC), a standard model used in AFM-single cell force spectroscopy (SCFS), little is known about apparent Young’s modulus (Ea) or adhesion of animal RBCs displaying distinct cellular features. To close this knowledge gap, we probed chicken, horse, camel, and human fetal RBCs and compared data with human adults serving as a repository for future studies. Additionally, we assessed how measurements are affected under physiological conditions (species-specific temperature in autologous plasma vs. 25 °C in aqueous NaCl solution). In all RBC types, Ea decreased with increasing temperature irrespective of the suspension medium. In mammalian RBCs, adhesion increased with elevated temperatures and scaled with reported membrane sialic acid concentrations. In chicken only adhesion decreased with higher temperature, which we attribute to the lower AE-1 concentration allowing more membrane undulations. Ea decreased further in plasma at every test temperature, and adhesion was completely abolished, pointing to functional cell enlargement by adsorption of plasma components. This halo elevated RBC size by several hundreds of nanometers, blunted the thermal input, and will affect the coupling of RBCs with the flowing plasma. The study evidences the presence of a RBC surface layer and discusses the tremendous effects when RBCs are probed at physiological conditions.  相似文献   

11.
致病菌往往通过凝集素-糖特异性识别来实现对宿主细胞的粘附,进而感染宿主组织,引起病变。因此,研究致病菌与糖的特异性识别有利于进一步了解感染性疾病的致病机制,为致病菌的特异性检测和感染性疾病的治疗提供新的策略。该文总结了致病菌-糖特异性识别的相关机制机理;介绍了目前主要的研究方法和技术,特别评述了荧光光谱、表面等离子体共振、电化学阻抗谱及石英晶体微天平等技术在该研究中的应用现状,并对这4种技术与微流控芯片平台的结合进行了探讨;针对致病菌检测特异性差、耐药性严重等难题,重点综述了致病菌-糖的特异性识别在细菌分离、富集、检测、鉴别、生物膜抑制及抗菌糖类药物筛选方面的应用。最后对致病菌-糖特异性识别基础和应用研究进行了展望。  相似文献   

12.
Engineered nanomaterials (ENMs) are increasingly being used in the food industry. In order to assess the efficacy and the risks of these materials, it is essential to have access to methods that not only detect the nanomaterials, but also provide information on the characteristics of the materials (e.g., size and shape).This review presents an overview of electron microscopy (EM)-based methods that have been, or have the potential to be, applied to imaging ENMs in foodstuffs. We provide an overview of approaches to sample preparation, including drying, chemical treatment, fixation and cryogenic methods. We then describe standard and non-standard EM-based approaches that are available for imaging prepared samples. Finally, we present a strategy for selecting the most appropriate method for a particular foodstuff.  相似文献   

13.
Adhesion studies of bacteria (Staphylococcus epidermidis) to plasma modified PET films were conducted in order to determine the role of the surface free energy under static and dynamic conditions. In particular, we investigated the effect of the ageing time on the physicochemical surface properties of helium (He) and 20% of oxygen in helium (He/O2) plasma treated polyethylene terephthalate (PET) as well as on the bacterial adhesion. Treatment conditions especially known to result in ageing sensitive hydrophilicity (hydrophobic recovery) were intentionally chosen in an effort to obtain the widest possible range of surface energy specimens and also to avoid strong changes in the morphological properties of the surface. Both plasma treatments are shown to significantly reduce bacterial adhesion in comparison to the untreated PET. However, the ageing effect and the subsequent decrease in the surface free energy of the substratum surfaces with time – especially in the case of He treated samples – seem to favor bacterial adhesion and aggregation. The dispersion-polar and the Lifshitz–van der Waals (LW) acid–base (AB) thermodynamic approaches were applied to calculate the Gibbs free energy changes of adhesion (ΔGadh) of S. epidermidis interacting with the substrates. There was a strong correlation between the thermodynamic predictions and the measured values of bacterial adhesion, when adhesion was performed under static conditions. By decoupling the (ΔGadh) values into their components, we observed that polar/acid–base interactions dominated the interactions of bacteria with the substrates in aqueous media. However, under flow conditions, the increase in the shear rate restricted the predictability of the thermodynamic models.  相似文献   

14.
The growing attention to forward osmosis (FO) membrane processes from various disciplines raises the demand for systematic research on FO membrane fouling. This study investigates the role of various physical and chemical interactions, such as intermolecular adhesion forces, calcium binding, initial permeate flux, and membrane orientation, in organic fouling of forward osmosis membranes. Alginate, bovine serum albumin (BSA), and Aldrich humic acid (AHA) were chosen as model organic foulants. Atomic force microscopy (AFM) was used to quantify the intermolecular adhesion forces between the foulant and the clean or fouled membrane in order to better understand the fouling mechanisms. A strong correlation between organic fouling and intermolecular adhesion was observed, indicating that foulant–foulant interaction plays an important role in determining the rate and extent of organic fouling. The fouling data showed that FO fouling is governed by the coupled influence of chemical and hydrodynamic interactions. Calcium binding, permeation drag, and hydrodynamic shear force are the major factors governing the development of a fouling layer on the membrane surface. However, the dominating factors controlling membrane fouling vary from foulant to foulant. With stronger intermolecular adhesion forces, hydrodynamic conditions for favorable foulant deposition leading to cake formation are more readily attained. Before a compact cake layer is formed, the fouling rate is affected by both the intermolecular adhesion forces and hydrodynamic conditions. However, once the cake layer forms, all three foulants have very similar flux decline rates, and further changes in hydrodynamic conditions do not influence fouling behavior.  相似文献   

15.
We evaluated self-assembled monolayers (SAMs) as potential coatings to prevent bacterial adhesion to biomaterials. Bacterial retention experiments were conducted on SAMs, some of which were coated with the model proteins fetal bovine serum (FBS) and fibronectin (FN). A thermodynamic approach was applied to calculate the Gibbs free energy changes of adhesion (DeltaG(adh)) of Staphylococcus epidermidis interacting with the substrates. When only nonspecific interactions controlled bacterial attachment, such as for the non-protein-coated substrates or the FBS substrates, the correlation between the thermodynamic predictions and measured values of bacterial retention was strong. However, when FN was adsorbed to the surfaces, the thermodynamic modeling underestimated bacterial adhesion, presumably since specific interactions between proteins of S. epidermidis and FN led to stronger attachment. Bacterial viability on the substrates was correlated with thermodynamic properties. For example, although bacteria attached more to surfaces having negative DeltaG(adh) values, these cells experienced the greatest loss of viability, presumably since strongly attached bacteria were unable to divide and grow. When the DeltaG(adh) values were decoupled into their components, we saw that acid-base interactions due to hydrogen bonding dominated the interactions of bacteria and proteins with each other and with the substrates in aqueous media. Finally, we discuss concerns regarding the use of the thermodynamic model to predict bacterial adhesion behavior in biomaterials systems.  相似文献   

16.
The effect of ohmic and conventional heat processing of different food products on their chemical and physical parameters was studied. Depending on the food being analysed, parameters such as pH, total solids, ash, titratable acidity, ascorbic acid, total sugars, total fatty acids, total phenolic compounds, and anthocyanins content were determined before and after ohmic and conventional pasteurization techniques and the results were compared using one-way analysis of variance. In goat milk samples treated by ohmic technology the pH value (6.58) and total fatty acids content in milk fat (86.5 mass %) were comparable to those found in milk treated by conventional process, however, ohmically treated samples presented a lower content of lactic acid, 0.13 %. In cloudberry jam samples treated by ohmic technology the results of some of the main parameters tested, such as total sugar content 46.1 mass %, ascorbic acid content 2.83 mass %, and titratable acidity 6.01 mass % (as citric acid) did not show significant differences when compared with samples treated by conventional technology. Presented at the 33rd International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, 22–26 May 2006.  相似文献   

17.
The supply and consumption of probiotic foods, and particularly probiotic dairy products, has grown steadily in recent years. In the production of dairy products of this type other microbes must also be used in addition to the microbes which provide the probiotic effect and which generally have a proliferation optimum at 37°C. The probiotic microbes have a neutral taste in dairy products consequently the taste of fermented dairy products is supplied by other microbes. These microbes are likewise lactic acid bacteria, and their proliferation optima are either below (mesophilic) or above (thermophilic) that of the probiotic microbes. It is imperative to have an indication of whether the probiotic bacteria have multiplied at the fermentation temperature used during the technology, since they provide the beneficial physiological effect of the product. Isothermic calorimetry appeared a suitable method for the indication of this process, because the amount of heat released during lactic acid bacterial proliferation differs from the probiotic one. In order to analyze the heat flow curves a deconvolutional program was developed which decomposed them into Gaussian curves, because the proliferation of individual microbes follows a lognormal distribution. The Gaussian curve characteristic for the culture was determined, and from the area under the curve the heat liberated during the creation of one microbe was calculated.  相似文献   

18.
The kinetics of chemical transformation during the yogurt production was obtained using micro-Raman spectroscopy: Raman spectra were obtained as a function of the incubation time in the fermentation process from milk to yogurt. The milk fermentation by the lactic acid bacteria produces morphological, chemical and textural changes. The chemical transformations were followed using micro-Raman spectroscopy, while the aggregation process and some textural properties through the use of dynamic light scattering, viscosity and pH. Samples with three different starter culture concentrations and different incubation temperatures were prepared. The results indicate the presence of two regimes: the first one (primary metabolism) is characterized by an increment in the initial number of bacteria to reach a high concentration according to the conditions of food, temperature and space, together with some initial chemical transformations. The second regime corresponds properly to the fermentation process accelerated by the continuous reduction in pH due to the lactic acid production; this is accompanied by physical and chemical changes where new structures are created. Knowledge of the kinetics of chemical and physical transformations allows having a better control of the final product with an increase in the quality and shelf life of the final product; problems like phase separation, homogeneity, particle size, acidity, etc., can be controlled.  相似文献   

19.
Summary The quality of sour cream production from homogenised cream in the 1970's was highly improved. The heat resistance of product remained badly, that is, it precipitated in hot food. The Hungarian Dairy Research Institute (HDRI) has elaborated a technology that eliminates this disadvantageous characteristic: it is the use of exopolysaccharide (EPS)-producing lactic acid bacteria. This bacterium produces no aroma, and the proliferation optima of EPS-producing and aroma-producing lactic acid bacteria cultures do not coincide. Detection of these two bacteria was done until now by gene technology, that is expensive and long lasting one. We have applied (at first as we know) isotherm calorimetric method to follow the simultaneous proliferation of these bacteria and it was determined that: both lactic acid bacteria cultures proliferate well at the non-optimal temperature of 30°C and the thermophilic EPS-producing culture was faster than that of the mesophilic aroma-producer. The two cultures do not inhibit each other in mixed culture, and the ratio in mixed culture was 79% EPS-producer and 21% aroma-producer.  相似文献   

20.
 The adhesion behavior that governs many technologically and biologically relevant polymer properties can be investigated by zeta potential measurements with varied electrolyte concentration or pH. In a previous work [1] it was found that the difference of the adsorption free energies of Cl- and K+ ions correlates with the adhesion force caused by van der Waals interactions, and that the decrease of adhesion strength by adsorption layers can be elucidated by zeta potential measurements. In order to confirm these interrelations, zeta potential measurements were combined with atomic force microscopy (AFM) measurements. Force–distance curves between poly(ether ether ketone) and fluorpolymers, respectively, and the Si3N4 tip of the AFM device in different electrolyte solutions were measured and analysed. The adsorption free energy of anions calculated from the Stern model correlates with their ability to prevent the adhesion between the polymer surface and the Si3N4 tip of the AFM device. These results demonstrate the influence of adsorption phenomena on the adhesion behavior of solids. The results obtained by AFM confirm the thesis that the electrical double layer of solid polymers in electrolyte solutions is governed by ion adsorption probably due to van der Waals interactions and that therefore van der Waals forces can be detected by zeta potential measurements. Received: 18 November 1997 Accepted: 19 January 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号