首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
In some cold areas/regions, ice accumulation is harmful to aircrafts, highways and power lines. To overcome this challenge, many researchers have focused on developing anti-icing surfaces. In this paper, liquid crystal compound Cholest-5-en-3-ol(3β)-4-(2-propenyloxy)benzoate was synthesised, and a liquid crystal surface (LC surface) is prepared by heating the liquid crystal compound to 250°C and then cooling it. We determined ice-phobic properties of LC surface using differential scanning calorimetry (DSC) and polarised optical microscope (POM). A phenomenon that the freezing of water droplet on the LC surface is delayed was found. Compared with the two measurement methods, we obtained similar result that water freezing temperature was delayed nearly by 8°C on average on the LC surface. A process of ice/frost formation is observed using POM. The results displayed that the glass wafer without LC was covered completely by ice/frost, whereas on the LC surface at the same temperature no ice/frost was formed. Characteristics of LC surface were observed by field emission scanning electron microscope (FESEM) and Fourier transform infrared (FT-IR) imaging system. We suggest that the reason behind anti-ice surface is related to surface molecules and this is an important factor which may have an effect on anti-icing property.  相似文献   

2.
Thermal Analysis of Semi-Dilute Hyaluronan Solutions   总被引:1,自引:0,他引:1  
The freezing and melting of water in semi-dilute (0.5–3.0%) solutions of the polysaccharide hyaluronanhave been investigated by modulated differential scanning calorimetry.High molecular weight hyaluronan inhibited nucleation of ice and significantly depressed thefreezing temperature in a dynamic scan conducted at –3.0°C min–1. Low molecular weight hyaluronan had a weaker and more variable effect on nucleation. Theeffects on nucleation, especially by the high molecular weight hyaluronan, are attributed tothe influence of a hyaluronan network on the formation of critical ice nuclei.Both high and low molecular weight hyaluronan reduced the melting temperature of ice by 0.4–1.1°C, depending on concentration. The enthalpy change associated with this transitionwas significantly reduced. If all of the enthalpy difference is attributed to the presence of non-freezing water, approximately 3.65 g water/g hyaluronan would be non-freezing. This result appears incompatible with published studies on hyaluronan samples of low water content. An alternative hypothesis and quantitative approach to analysis of the data are suggested. The data are interpreted in terms of a small amount of non-freezing water, and amuch larger boundary layer of water surrounding hyaluronan chains, which has slightly altered thermodynamic properties relative to those of bulk water. The boundary layer water behaves similarly to water trapped in small pores in solid materials and hydrogels.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

3.
We discuss the minimum size of ice nanoparticles in water-rich glycerol-water mixtures, as studied by broadband dielectric spectroscopy (BDS) in the frequency range from 1 Hz to 250 MHz and differential scanning calorimetry (DSC) at the temperature interval from 138 to 313 K. It is known that the extra water which is free from the glycerol hydrogen bond network forms the water cooperative domain. This cooperative domain leads to a freezing of water. With the formation of the frozen water state, another distinct water structure forms on the interface between the ice nanocrystal and mesoscopic glycerol-water domain. The mole fractions of different stages of water (i.e., water molecules in the mesoscopic domain, ice nanocrystals, and the interface between the two) were determined, and the minimum number of water molecules that can gain the bulk ice properties was estimated as approximately 300 water molecules.  相似文献   

4.
Sorption of Ni2+ions from aqueous solutions by ion exchangers differed in their chemical nature and structure was studied. Based on the endothermic curves of ice melting obtained by a differential scanning calorimetry, the amounts of freezing and non-freezing water present in free volumes (pores) of the studied ion exchangers were calculated. Comparison of results obtained from the kinetic curves of nickel ion sorption with data on differential scanning calorimetry indicates a role of structural factor in the sorption of nickel ions. It was found that, depending on the total amount of freezing and non-freezing water, the KU-2-8 sulfonated cationite is the most preferable ion exchanger for the sorption of nickel ions from aqueous solutions. Therefore, sorbent efficiency in this case is determined by its structure rather than by chemical nature.  相似文献   

5.
Evaluation of thermoporometry for characterization of mesoporous materials   总被引:1,自引:0,他引:1  
The accuracy of thermoporometry (TPM) in terms of the characterization of SBA-15 is examined based on a model that classifies the water in the mesopores into two different types: freezable pore water, which can form cylindrical ice crystals, and nonfreezable pore water, which cannot undergo a phase transition during a differential scanning calorimetry (DSC) measurement. Applying the empirical relationship between the sizes of the ice crystals formed in the mesopores and the solidification temperature of the freezable pore water to a thermogram (a recording of the heat flux during the solidification of the freezable pore water) yielded a size distribution of the ice crystals. The size of the ice crystals increased slightly with repetitive freezing, indicating that the mesopores were enlarged by formation of the ice crystals. Adding the thickness, t(nf), of the nonfreezable pore water layer to the ice crystal-size distribution calculated from the thermogram allowed for the determination of the porous properties of SBA-15. The porous properties attained from TPM experiments were compared with the results attained through the combination of Ar gas adsorption experiments and nonlocal density functional theory (NLDFT) analysis. The porous properties determined by TPM were confirmed to be quite sensitive to the t(nf) value.  相似文献   

6.
The freezing mechanism of water contacted with mesoporous silicas with uniform pore shapes, both cylindrical and cagelike, was studied by thermodynamic and structural analyses with differential scanning calorimetry (DSC) and X-ray diffraction (XRD) together with adsorption measurements. In the DSC data extra exothermic peaks were found at around 230 K for water confined in SBA-15, in addition to that due to the freezing of pore water. These peaks are most likely to be ascribed to the freezing of water present over the micropore and/or mesopore outlets of coronas in SBA-15. Freezing of water confined in SBA-16 was systematically analysed by DSC with changing the pore size. The freezing temperature was found to be around 232 K, close to the homogeneous nucleation temperature of bulk water, independent of the pore size when the pore diameter (d) < 7.0 nm. Water confined in the cagelike pores of SBA-16 is probably surrounded by a water layer (boundary water) at the outlets of channels to interconnect the pores and of fine corona-like pores, which is similar to that present at the outlet of cylindrical pores in MCM-41 and of cylindrical channels in SBA-15. The presence of the boundary water would be a key for water in SBA-16 to freeze at the homogeneous nucleation temperature. This phenomenon is similar to those well known for water droplets in oil and water droplets of clouds in the sky. The XRD data showed that the cubic ice I(c) was formed in SBA-16 as previously found in SBA-15 when d < 8.0 nm.  相似文献   

7.
This work was undertaken to investigate thermal and dynamic transitions observed in the temperature range close to the bulk ice melting temperature in sucrose solutions. Measurements of thermal (differential calorimetry) and dynamic (neutron scattering) properties were compared in order to give a physical interpretation of the thermal transitions observed during the thawing of amorphous sucrose solutions. In fact, the freezing of biological material leads to the distinction between different pools of water: bulk water which becomes ice after freezing, unfrozen water trapped in the glassy matrix or close to the interface of solutes can be considered, and finally freezable confined water with a lower melting point than bulk water and with properties depending on both the ice presence and the microstructure of the material. The transition temperatures such as glass transition or melting are dependent on the freezing protocol used and examples of annealing effects are presented, in order to underline the necessity of a good temperature control during freezing for the study of biological material with freezable water.  相似文献   

8.
Micro-porous layers (MPLs) play an important role in the water management of polymer electrolyte fuel cells (PEFCs), however, the detailed mechanism of how the produced water is drained from these layers is not well understood. This paper observed the cross-sectional distribution of liquid water inside the cathode MPL to elucidate details of the phase state of the water transported through the MPL. The freezing method and cryo-scanning electron microscope (cryo-SEM) are used for the observations; the freezing method enables immobilization of the liquid water in the cell as ice forms by the freezing, and the cryo-SEM can visualize the water distribution in the vicinity of the MPL at high resolution without the ice melting. It was shown that no liquid water accumulates inside the MPL in operation at 35 °C, while the pores of the MPL are filled with liquid water under very low cell temperature operation, at 5 °C. These results indicate that the produced water passes through the MPL not as a liquid but in the vapor state in usual PEFC operation. Additionally, liquid water at the interface between the MPL and a catalyst layer (CL) was identified, and the effect of the interfacial contact on the water distribution was examined.  相似文献   

9.
Biogenic particles have the potential to affect the formation of ice crystals in the atmosphere with subsequent consequences for the hydrological cycle and climate. We present laboratory observations of heterogeneous ice nucleation in immersion and deposition modes under atmospherically relevant conditions initiated by Nannochloris atomus and Emiliania huxleyi, marine phytoplankton with structurally and chemically distinct cell walls. Temperatures at which freezing, melting, and water uptake occur are observed using optical microscopy. The intact and fragmented unarmoured cells of N. atomus in aqueous NaCl droplets enhance ice nucleation by 10-20 K over the homogeneous freezing limit and can be described by a modified water activity based ice nucleation approach. E. huxleyi cells covered by calcite plates do not enhance droplet freezing temperatures. Both species nucleate ice in the deposition mode at an ice saturation ratio, S(ice), as low as ~1.2 and below 240 K, however, for each, different nucleation modes occur at warmer temperatures. These observations show that markedly different biogenic surfaces have both comparable and contrasting effects on ice nucleation behaviour depending on the presence of the aqueous phase and the extent of supercooling and water vapour supersaturation. We derive heterogeneous ice nucleation rate coefficients, J(het), and cumulative ice nuclei spectra, K, for quantification and analysis using time-dependent and time-independent approaches, respectively. Contact angles, α, derived from J(het)via immersion freezing depend on T, a(w), and S(ice). For deposition freezing, α can be described as a function of S(ice) only. The different approaches yield different predictions of atmospheric ice crystal numbers primarily due to the time evolution allowed for the time-dependent approach with implications for the evolution of mixed-phase and ice clouds.  相似文献   

10.
Homogeneous ice nucleation plays an important role in the formation of cirrus clouds with subsequent effects on the global radiative budget. Here we report on homogeneous ice nucleation temperatures and corresponding nucleation rate coefficients of aqueous droplets serving as surrogates of biomass burning aerosol. Micrometer-sized (NH(4))(2)SO(4)/levoglucosan droplets with mass ratios of 10:1, 1:1, 1:5, and 1:10 and aqueous multicomponent organic droplets with and without (NH(4))(2)SO(4) under typical tropospheric temperatures and relative humidities are investigated experimentally using a droplet conditioning and ice nucleation apparatus coupled to an optical microscope with image analysis. Homogeneous freezing was determined as a function of temperature and water activity, a(w), which was set at droplet preparation conditions. The ice nucleation data indicate that minor addition of (NH(4))(2)SO(4) to the aqueous organic droplets renders the temperature dependency of water activity negligible in contrast to the case of aqueous organic solution droplets. The mean homogeneous ice nucleation rate coefficient derived from 8 different aqueous droplet compositions with average diameters of ~60 μm for temperatures as low as 195 K and a(w) of 0.82-1 is 2.18 × 10(6) cm(-3) s(-1). The experimentally derived freezing temperatures and homogeneous ice nucleation rate coefficients are in agreement with predictions of the water activity-based homogeneous ice nucleation theory when taking predictive uncertainties into account. However, the presented ice nucleation data indicate that the water activity-based homogeneous ice nucleation theory overpredicts the freezing temperatures by up to 3 K and corresponding ice nucleation rate coefficients by up to ~2 orders of magnitude. A shift of 0.01 in a(w), which is well within the uncertainty of typical field and laboratory relative humidity measurements, brings experimental and predicted freezing temperatures and homogeneous ice nucleation rate coefficients into agreement. The experimentally derived ice nucleation data are applied to constrain the water activity-based homogeneous ice nucleation theory to smaller than ±1 order of magnitude compared to the predictive uncertainty of larger than ±6 orders of magnitude. The atmospheric implications of these findings are discussed.  相似文献   

11.
Summary: Multifunctional poly(tartar amides) have been synthesized and used as bio‐inspired antifreeze additives. It is shown that these polymers strongly interfere with the crystallization process of water in comparison to commercially available commodity polymers. While the addition of the poly(tartar amides) results in minor freezing point depression, as is shown by differential scanning calorimetry, a strong change in the ice crystal morphology is evident. Wide‐angle X‐ray scattering and optical microscopy indicate that the hexagonal structure of undisturbed ice‐crystals is oriented and partly deformed.

Light microscopy image of ice crystals at 223 K after a freezing assay with poly(tartar amides) shown at a polymer concentration of 2 wt.‐%.  相似文献   


12.
Unlike reversible phase transitions, the amount of heat released upon freezing of a metastable supercooled liquid depends on the degree of supercooling. Although terrestrial supercooled water is ubiquitous and has implications for cloud dynamics and nucleation, measurements of its heat of freezing are scarce. We have performed calorimetric measurements of the heat released by freezing water at atmospheric pressure as a function of supercooling. Our measurements show that the heat of freezing can be considerably below one predicted from a reversible hydrostatic process. Our measurements also indicate that the state of the resulting ice is not fully specified by the final pressure and temperature; the ice is likely to be strained on a variety of scales, implying a higher vapor pressure. This would reduce the vapor gradient between supercooled water and ice in mixed phase atmospheric clouds.  相似文献   

13.
We have studied the low temperature phase diagram and water activities of the ammonium sulfate/maleic acid/water system using differential scanning calorimetry and infrared spectroscopy of thin films. Using the results from our experiments, we have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/maleic acid phase boundary as well as the ternary eutectic composition and temperature. We also compare our results to the predictions of the extended AIM aerosol thermodynamics model and find good agreement for the ice melting points in the ice primary phase field of this system; however significant differences were found with respect to phase boundaries, maleic acid dissolution, and ammonium sulfate dissolution.  相似文献   

14.
This study presents heterogeneous ice nucleation from water and aqueous NaCl droplets coated by 1-nonadecanol and 1-nonadecanoic acid monolayers as a function of water activity (a(w)) from 0.8 to 1 accompanied by measurements of the corresponding pressure-area isotherms and equilibrium spreading pressures. For water and aqueous NaCl solutions of ~0-20 wt % in concentration, 1-nonadecanol exhibits a condensed phase, whereas the phase of 1-nonadecanoic acid changes from an expanded to a condensed state with increasing NaCl content of the aqueous subphase. 1-Nonadecanol-coated aqueous droplets exhibit the highest median freezing temperatures that can be described by a shift in a(w) of the ice melting curve by 0.098 according to the a(w)-based ice nucleation approach. This freezing curve represents a heterogeneous ice nucleation rate coefficient (J(het)) of 0.85 ± 0.30 cm(-2) s(-1). The median freezing temperatures of 1-nonadecanoic acid-coated aqueous droplets decrease less with increasing NaCl content compared to the homogeneous freezing temperatures. This trend in freezing temperature is best described by a linear function in a(w) and not by the a(w)-based ice nucleation approach most likely due to an increased ice nucleation efficiency of 1-nonadecanoic acid governed by the monolayer state. This freezing curve represents J(het) = 0.46 ± 0.16 cm(-2) s(-1). Contact angles (α) for 1-nonadecanol- and 1-nonadecanoic acid-coated aqueous droplets increase as temperature decreases for each droplet composition, but absolute values depend on employed water diffusivity and the interfacial energies of the ice embryo. A parametrization of log[J(het)(Δa(w))] is presented which allows prediction of freezing temperatures and heterogeneous ice nucleation rate coefficients for water and aqueous NaCl droplets coated by 1-nonadecanol without knowledge of the droplet's composition and α.  相似文献   

15.
Lu  M.  Wang  B.  Li  Zh.  Fei  Y.  Wei  L.  Gao  Sh. 《Journal of Thermal Analysis and Calorimetry》2002,67(3):689-698
Antifreeze protein (AFP) can lower the freezing point by inhibiting the growth of ice crystals. In this article, the thermal hysteresis activity (THA) of a plant AFP was measured with differential scanning calorimetry (DSC). As is shown, when the amount of ice in the sample was less than 5% THA of this AFP reached as high as 0.35°C. The secondary structure of this AFP was studied with circular dichroism (CD). The CD spectrum from 195to 240 nm indicated a well-defined secondary structure consisting 11% α-helix, 34%antiparallel β-sheet and 55% random coil. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Hydrate formation and dissociation processes are always accompanied by water migration in porous media, which is similar to the ice. In our study, a novel pF-meter sensor which could detect the changes of water content inside sand was first applied to hydrate formation and dissociation processes. It also can study the water change characteristics in the core scale of a partially saturated silica sand sample and compare the differences of water changes between the processes of formation and dissociation of methane hydrate and freezing and thawing of ice. The experimental results showed that the water changes in the processes of formation and dissociation of methane hydrate were basically similar to that of the freezing and thawing of ice in sand. When methane hydrate or ice was formed, water changes showed the decrease in water content on the whole and the pF values rose following the formation processes. However, there were very obvious differences between the ice thawing and hydrate dissociation.  相似文献   

17.
Glass transition and state diagram for freeze-dried horse mackerel muscle   总被引:4,自引:0,他引:4  
Glass transition temperatures of freeze-dried horse mackerel muscle conditioned at various water activities at 25 °C were determined by differential scanning calorimetry (DSC). High moisture content (>0.33 g/g, d.b.) samples obtained by adding liquid water into freeze-dried samples, were also analyzed. The state diagram was composed of the freezing curve and the glass transition line, which were fitted according to Clausius–Clapeyron model and Gordon–Taylor model, respectively. The state diagram yielded maximally freeze-concentrated solutes at 0.786 solids with the characteristic temperature of glass formation being −83.1 °C. The state diagram of horse mackerel muscle developed in this work could be used to predict the stability during frozen storage and in dried conditions as well as in designing drying and freezing processes.  相似文献   

18.
Water nanoparticles play an important role in atmospheric processes, yet their equilibrium and nonequilibrium liquid-ice phase transitions and the structures they form on freezing are not yet fully elucidated. Here we use molecular dynamics simulations with the mW water model to investigate the nonequilibrium freezing and equilibrium melting of water nanoparticles with radii R between 1 and 4.7 nm and the structure of the ice formed by crystallization at temperatures between 150 and 200 K. The ice crystallized in the particles is a hybrid form of ice I with stacked layers of the cubic and hexagonal ice polymorphs in a ratio approximately 2:1. The ratio of cubic ice to hexagonal ice is insensitive to the radius of the water particle and is comparable to that found in simulations of bulk water around the same temperature. Heating frozen particles that contain multiple crystallites leads to Ostwald ripening and annealing of the ice structures, accompanied by an increase in the amount of ice at the expense of the liquid water, before the particles finally melt from the hybrid ice I to liquid, without a transition to hexagonal ice. The melting temperatures T(m) of the nanoparticles are not affected by the ratio of cubic to hexagonal layers in the crystal. T(m) of the ice particles decreases from 255 to 170 K with the particle size and is well described by the Gibbs-Thomson equation, T(m)(R) = T(m)(bulk) - K(GT)/(R - d), with constant K(GT) = 82 ± 5 K·nm and a premelted liquid of width d = 0.26 ± 0.05 nm, about one monolayer. The freezing temperatures also decrease with the particles' radii. These results are important for understanding the composition, freezing, and melting properties of ice and liquid water particles under atmospheric conditions.  相似文献   

19.
We report a study of the effects of confinement in multi-walled carbon nanotubes and mesoporous silica glasses (SBA-15) on the solid structure and melting of both H(2)O and D(2)O ice, using differential scanning calorimetry, dielectric relaxation spectroscopy, and neutron diffraction. Multi-walled nanotubes of 2.4, 3.9 and 10 nm are studied, and the SBA-15 studied has pores of mean diameter 3.9 nm; temperatures ranging from approximately 110 to 290 K were studied. We find that the melting point is depressed relative to the bulk water for all systems studied, with the depression being greater in the case of the silica mesopores. These results are shown to be consistent with molecular simulation studies of freezing in silica and carbon materials. The neutron diffraction data show that the cubic phase of ice is stabilized by the confinement in carbon nanotubes, as well as in silica mesopores, and persists up to temperatures of about 240 K, above which there is a transition to the hexagonal ice structure.  相似文献   

20.
Adsorption studies of acetone on pure ice surfaces obtained by water freezing or deposition or on frozen ice surfaces doped either with HNO3 or H2SO4 have been performed using a coated wall flow tube coupled to a mass spectrometric detection. The experiments were conducted over the temperature range 203-233 K and freezing solutions containing either H2SO4 (0.2 N) or HNO3 (0.2-3 N). Adsorption of acetone on these ice surfaces was always found to be totally reversible whatever were the experimental conditions. The number of acetone molecules adsorbed per ice surface unit N was conventionally plotted as a function of acetone concentration in the gas phase. For the same conditions, the amount of acetone molecules adsorbed on pure ice obtained by deposition are about 3-4 times higher than those measured on frozen ice films, H2SO4-doped ice surfaces lead to results comparable to those obtained on pure ice. On the contrary, N increases largely with increasing concentrations of nitric acid in ice surfaces, up to about 300 times under our experimental conditions and for temperatures ranging between 213 and 233 K. Finally, the results are discussed and used to reestimate the partitioning of acetone between the ice and gas phases in clouds of the upper troposphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号