首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytic epoxidation of cyclohexene by iron(III) porphyrin complexes and H2O2 has been investigated in alcohol solvents to understand factors affecting the catalyst activity in protic solvents. The yields of cyclohexene oxide and the Fe(III/II) reduction potentials of iron porphyrin complexes were significantly affected by the protic solvents, and there was a close correlation between the product yields and the reduction potentials of the iron porphyrin catalysts. The role of alcohol solvents was proposed to control the electronic nature of iron porphyrin complexes that determines the catalyst activity in the epoxidation of olefins by H2O2. We have also demonstrated that an electron-deficient iron porphyrin complex can catalyze the epoxidation of olefins by H2O2 under conditions of limiting substrate with high conversion efficiency in a solvent mixture of CH3OH and CH2Cl2.  相似文献   

2.
Nam W  Jin SW  Lim MH  Ryu JY  Kim C 《Inorganic chemistry》2002,41(14):3647-3652
We have studied an anionic ligand effect in iron porphyrin complex-catalyzed competitive epoxidations of cis- and trans-stilbenes by various terminal oxidants and found that the ratios of cis- to trans-stilbene oxide products formed in competitive epoxidations were markedly dependent on the ligating nature of the anionic ligands. The ratios of cis- to trans-stilbene oxides obtained in the reactions of Fe(TPP)X (TPP = meso-tetraphenylporphinato dianion and X(-) = anionic ligand) and iodosylbenzene (PhIO) were 14 and 0.9 when the X(-) of Fe(TPP)X was Cl(-) and CF(3)SO(3)(-), respectively. An anionic ligand effect was also observed in the reactions of an electron-deficient iron(III) porphyrin complex containing a number of different anionic ligands, Fe(TPFPP)X [TPFPP = meso-tetrakis(pentafluorophenyl)porphinato dianion and X(-) = anionic ligand], and various terminal oxidants such as PhIO, m-chloroperoxybenzoic acid (m-CPBA), tetrabutylammonium oxone (TBAO), and H(2)O(2). While high ratios of cis- to trans-stilbene oxides were obtained in the reactions of iron porphyrin catalysts containing ligating anionic ligands such as Cl(-) and OAc(-), the ratios of cis- to trans-stilbene oxide were low in the reactions of iron porphyrin complexes containing nonligating or weakly ligating anionic ligands such as SbF(6)(-), CF(3)SO(3)(-), and ClO(4)(-). When the anionic ligand was NO(3)(-), the product ratios were found to depend on terminal oxidants and olefin concentrations. We suggest that the dependence of the product ratios on the anionic ligands of iron(III) porphyrin catalysts is due to the involvement of different reactive species in olefin epoxidation reactions. That is, high-valent iron(IV) oxo porphyrin cation radicals are generated as a reactive species in the reactions of iron porphyrin catalysts containing nonligating or weakly ligating anionic ligands such as SbF(6)(-), CF(3)SO(3)(-), and ClO(4)(-), whereas oxidant-iron(III) porphyrin complexes are the reactive intermediates in the reactions of iron porphyrin catalysts containing ligating anionic ligands such as Cl(-) and OAc(-).  相似文献   

3.
A high-valent iron(IV)-oxo porphyrin pi-cation radical is an active oxidant in the catalytic oxygenation of organic substrates by an iron(III) porphyrin complex and peracids, whereas an iron(III)-oxidant porphyrin adduct is a sluggish oxidant in iron porphyrin model reactions.  相似文献   

4.
A dimeric iron N-confused porphyrin, [Fe(NCTPP)]2 was obtained from the anaerobic reaction of Fe(NCTPP)Br with NaSePh while under aerobic conditions a hydroxo bridged iron dimer with Na bridging the outer-N atoms was obtained and oxygenation occurred on the inner core pyrrolic carbon to form a novel ONCTPP porphyrinic ring.  相似文献   

5.
Electrodes modified with iron porphyrin and carbon nanotubes (FeP–CNTs) were prepared and used for CO2 electroreduction. The adsorption of iron porphyrin onto the multiwalled carbon nanotubes was characterized by scanning electron microscopy and ultraviolet and visible spectroscopy. The electrochemical properties of the modified electrodes for CO2 reduction were investigated by cyclic voltammetry and CO2 electrolysis. The FeP–CNT electrodes exhibited less negative cathode potential and higher reaction rate than the electrodes modified only with iron porphyrin or carbon nanotubes. A mechanism of the synergistic catalysis was proposed and studied by electrochemical impedance spectroscopy and electron paramagnetic resonance. The direct electron transfer between iron porphyrin and carbon nanotubes was examined. The current study shed light on the mechanism of synergistic catalysis between CNTs and metalloporphyrin, and the iron porphyrin–CNT-modified electrodes showed great potential in the efficient CO2 electroreduction.  相似文献   

6.
Water-soluble ferrous porphyrin (Fe(II)TPPS) was prepared by complexation reaction of free base porphyrin (H2TPPS) with iron(II) ions in the presence of iron(III)-trapping acetate buffer; the catalytic and photoinduced properties of this air-stable complex proved unambiguously its sitting-atop structure.  相似文献   

7.
The tetrafunctionalized AB3-type porphyrin building blocks containing two different types of functional groups with N4, N3O, N3S, and N2S2 porphyrin cores were synthesized by following various synthetic routes. The AB3-type tetrafunctionalized N4 porphyrin building block was synthesized by a mixed condensation approach, the N3S and N3O porphyrin building blocks by a mono-ol method, and N2S2 porphyrin building block by an unsymmetrical diol method. The tetrafunctionalized porphyrin building blocks were used to synthesize monofunctionalized porphyrin tetrads containing two different types of porphyrin subunits by coupling of 1 equiv of tetrafunctionalized N4, N3O, N3S, and N2S2 porphyrin building block with 3 equiv of monofunctionalized ZnN4 porphyrin building block under mild copper-free Pd(0) coupling conditions. The monofunctionalized porphyrin tetrads were used further to synthesize unsymmetrical porphyrin pentads containing three different types of porphyrin subunits by coupling 1 equiv of monofunctionalized porphyrin tetrad with 1 equiv of monofunctionalized N2S2 porphyrin building blocks under the same mild Pd(0) coupling conditions. The NMR, absorption, and electrochemical studies on porphyrin tetrads and porphyrin pentads indicated that the monomeric porphyrin subunits in tetrads and pentads retain their individual characteristic features and exhibit weak interaction among the porphyrin subunits. The steady state and time-resolved fluorescence studies support an efficient energy transfer from donor porphyrin subunit to acceptor porphyrin subunit in unsymmetrical porphyrin tetrads and porphyrin pentads.  相似文献   

8.
The reaction of iron(III) (meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (Fe(III)TMPyP) with nitric oxide (NO) was studied by electronic absorption spectroscopy, ESR, and electrochemical and spectroelectrochemical techniques in aqueous solutions with pH from 2.2 to 12.0. Fe(III)TMPyP has been found to undergo a reductive nitrosylation in all pHs, and the product of nitric oxide binding to the porphyrin has been determined as iron(II) porphyrin nitrosyl complex ([Fe(II)(NO)TMPyP]). The rate of the reductive nitrosylation exhibits a tendency to get faster with increase in pH. An intermediate species was observed around neutral pH by spectroelectrochemical technique and was proposed to be the iron(II) nitrosyl complex of the mu-oxo dimeric form of FeTMPyP, which is known to be a predominant in neutral solutions.  相似文献   

9.
A novel iron(III) porphyrin disulphide derivative have been successfully immobilised on gold surfaces by self-assembly. The redox response of the modified electrodes was compared with the obtained for a similar iron porphyrin in solution, confirming the immobilisation of the metalloporphyrin. The gravimetric data obtained by electrochemical quartz crystal microbalance (EQCM) during adsorption allowed an estimation of the electrode coverage, providing further evidence for the formation of the porphyrin SAM. The modified electrodes were also measured by conventional and imaging ellipsometry. The electrocatalytic activity of the two modified electrodes was tested for the reduction of the molecular oxygen.  相似文献   

10.
A catalytic coupling reaction between 4-amino antipyrine and a N,N-disubstituted aniline derivative has been exploited in the indirect electrochemical detection of horseradish peroxidase (HRP) and of a biomimetic catalyst, the iron(III) sulfonated tetraphenyl porphyrin. In the presence of hydrogen peroxide and one of the two catalysts a cationic electroactive quinone-iminium dye P+ was formed and detected by linear scan voltammetry using a screen-printed electrode coated with a Nafion film. Detection limits of 10(-12) M for HRP and 4 x 10(-10) M for the iron porphyrin have been achieved. In conclusion the iron porphyrin is considered to be a promising alternative to the HRP label in enzyme immunoassays with electrochemical detection.  相似文献   

11.
Mg-Al layered double hydroxide (LDH) intercalated with glycinate anions was synthesized through co-precipitation and exfoliated in formamide and the single-layer suspension was reacted with an aqueous iron porphyrin (FeTDFSPP) solution. The new composite was characterized by powder X-ray diffraction, UV-vis, FTIR, and electron paramagnetic spectroscopies and thermal analyses (simultaneous TG/DSC). The analyses demonstrated that glycinate anions continue to be intercalated and the anionic iron porphyrin is adsorbed at the surface of the layered double hydroxide crystals.  相似文献   

12.
Porphyrin monomers, 5-(monopyridyl)-10,15,20-(triphenyl)porphyrin ( 1 ), 5,10-(dipyridyl)-15,20-(diphenyl)-porphyrin ( 2 ), and 5,15-(dipyridyl)-10,20-{diphenyl)porphyrin ( 3 ), were linked by hydrocarbon chains to form a series of dimers, trimers and polymers. The 5-(monopyridyl)-10,15,20-(triphenyl)porphyrin monomers were linked by 2, 4, 6, 8 and 10 carbon chains through the alkylation of the pyridine nitrogens using the appropriate diiodoalkane to form positively charged linked dimers 4–8 . A trimer 12 was synthesized from two 5-(monopyridyl)-10,15,20-(triphenyl)porphyrin and one 5,10-(dipyridyl)-15,20-(diphenyl)porphyrin linked by a six carbon chain. Hydrocarbon linked (5,10-(dipyridyl)-15,20-(diphenyl)porphyrin)n ( 13 ) and (5,15-(dipyridyl)-10,20-(diphenyl)porphyrin)n ( 14 ) were also prepared.  相似文献   

13.
An electrochemical cell of generating nitric oxide (NO) was constructed in order to realize the catalytic reaction of nitrite by iron porphyrin [Y. Chi, J. Chen, K. Aoki, Inorg. Chem. 43 (2004) 8437]. The cell was composed of the generator of the iron porphyrin-including Nafion®-coated electrode, the ion-exchange membrane, and the electrochemical detector of NO. The reduction of iron porphyrin in the presence of nitrite at the generator coordinates nitrite to form the NO-included complex, of which oxidation releases NO. The water-dissolved NO diffused to the detector through the membrane to block nitrite. It was detected by voltammetry with the aid of the oxidative catalytic reaction of iron porphyrin.  相似文献   

14.
The preparation and characterization of the deoxymyoglobin model (2-methylimidazole)(tetraphenylporphinato)iron(II) is described. The preparation and crystallization from chlorobenzene leads to a new crystalline phase that has been structurally characterized. The complex is the most ordered example of a deoxymyoglobin model yet characterized. The X-ray structure determination reveals a number of distortions both in the iron coordination group and in the porphyrin core that result from the steric bulk of the axial ligand. Some of these distortions have been noted previously in related species; however, the demonstration of porphyrin core distortions and an asymmetry in the Fe-N(p) bond distances are new observations. These may have functional significance for this important type of heme protein coordination group. The new structure emphasizes that high-spin iron(II) porphyrinate derivatives display substantial structural pliability with significant variations in iron atom displacements, porphyrin core hole size, and axial and equatorial Fe-N bond lengths. The new complex has also been characterized by zero-field and applied field magnetic M?ssbauer spectroscopy. M?ssbauer parameters are characteristic for high-spin iron, although they also reveal an extremely rhombic site for iron(II). Crystal data at 130 K for [Fe(TPP)(2-MeHIm)].1.5C(6)H(5)Cl: a = 12.334(3) A, b = 13.515(6) A, c = 14.241(7) A, alpha = 70.62(3) degrees, beta = 88.29(2) degrees, gamma = 88.24(3) degrees, triclinic, space group, P, V = 2238(2) A(3), Z = 2.  相似文献   

15.
An iron porphyrin catalyst with four electron donor groups is reported. The porphyrin ligand bears a distal hydrogen bonding pocket which inverts the normal axial ligand binding selectivity exhibited by porphyrins bearing sterically crowded distal structures. This catalyst specifically reduces O(2) by four electrons under both fast and slow electron fluxes at pH 7.  相似文献   

16.
Immobilisation of both palladium(II) meso-tetrakis(N-methyl-4-pyridyl)porphyrin (PdTMPyP4+) and iron(III) meso-tetrakis(2,6-dichlorophenyl)porphyrin (FeTDCPP+) in the same membrane of Nafion creates a new composite system, in which the photoexcited palladium complex induces the O2-mediated oxidation of cyclohexene to the corresponding allylic hydroperoxide and the iron porphyrin works as a catalyst for specific oxygenations of cyclohexene and cyclooctene. The role of PdTMPyP4+ is to induce the photoactivation of O2 with visible light (lambda > 500 nm) to generate singlet oxygen (1O2) by means of energy transfer from the excited triplet state. Consequently, the 1O2-mediated oxidation of cyclohexene to cyclohexenyl hydroperoxide can be realised with a selectivity greater than 90%. Spectroscopic and photophysical investigations show that the tetracationic palladium porphyrin is mainly fixed to the external part of the Nafion membrane, it is characterised by a triplet-state lifetime significantly higher than that in the solution phase. The monocationic FeTDCPP+ is able to diffuse into the anionic cavities of Nafion, where it works as a catalyst for O2-mediated autooxidation processes that are initiated by the photogenerated hydroperoxides. These processes continue in the dark for many hours giving cyclohex-2-en-1-ol and trans-cyclohexane-1,2-diol monoethyl ether as main oxidation products. The presence of this ether, indirectly, reveals the formation of cyclohexene epoxide which undergoes a nucleophilic attack by ethanol and epoxide opening because of the strong acidic environment inside Nafion. The good photocatalytic efficiency of the oxidation process is demonstrated by an overall quantum yield of 1.1, as well as by a turnover value of 4.7 x 10(3) with respect to the iron porphyrin. When cyclooctene is present as co-substrate, it also undergoes oxygenation. In contrast to what was observed for cyclohexene, cyclooctene epoxide can be accumulated in a significant amount. As far as the stability of the system is concerned, FeTDCPP+ undergoes about 1% degradation during the process, while the Nafion matrix can be utilised several times without observable modification.  相似文献   

17.
焦向东  刘中立 《结构化学》1996,15(3):205-209
用X-射线测定了meso-5,10,15,20-四(3,4,5-三甲氧基苯基)卟啉的溶剂(正庚烷)合物(TTOMPP·2C_7H_(16))的晶体结构。实验表明,该化合物(C_(70)H_(86)N_4O_(12))的晶体属三斜晶系,空间群P1,a=8.749(6),b=15.129(6),c=16.449(3),a=60.07(3),β=70.64(4),γ=81.70(5),V=1779.6,M_r=1175.49,Z=1,D_c=1.097g/cm ̄3,μ=0.697cm ̄(-1),F(000)=630。讨论了卟啉环上取代基的电子和立体效应及卟啉与铁(Ⅲ)离子配位后铁(Ⅲ)离于对卟啉结构参数的影响。  相似文献   

18.
The reaction between H(2)O(2) and a pyridine-coordinated ferric porphyrin encapsulated by a cyclodextrin dimer yielded a hydroperoxoferric porphyrin intermediate, PFe(III)-OOH, which rapidly decomposed to oxoferryl porphyrin (PFe(IV)═O). Upon reaction with H(2)O(2), PFe(IV)═O reverted to PFe(III)-OOH, which was converted to carbon monoxide-coordinated ferrous porphyrin under a CO atmosphere. PFe(IV)═O in the presence of excess H(2)O(2) behaves as PFe(III)-OOH.  相似文献   

19.
A porphyrin molecule containing four meso-appended 2,2'-bipyridyl ligands has been prepared. Each bipyridine is attached to the porphyrin core at the 4-position (pseudo-para to one of the pyridine nitrogens). Subsequently, each of the four bipyridines was complexed with a RuL2(2+) moiety and iron coordinated in the porphyrin core. When L = 4-vinyl-4'-methyl-2,2'-bipyridine, reduction of the ruthenium centers resulted in the formation of robust electroactive polymer films which deposited on the electrode surface. In the presence of aqueous acid, these films electrocatalytically epoxidize cyclohexene at positive potentials from the formal iron(IV) oxidation state. Although product analysis has only been conducted for cyclohexene, the catalytic activity extends to a large variety of olefins including ethylene and propylene.  相似文献   

20.
Photophysical properties of porphyrin tapes   总被引:1,自引:0,他引:1  
The novel fused Zn(II)porphyrin arrays (Tn, porphyrin tapes) in which the porphyrin macrocycles are triply linked at meso-meso, beta-beta, beta-beta positions have been investigated by steady-state and time-resolved spectroscopic measurements along with theoretical MO calculations. The absorption spectra of the porphyrin tapes show a systematic downshift to the IR region as the number of porphyrin pigments increases in the arrays. The fused porphyrin arrays exhibit a rapid formation of the lowest excited states (for T2, approximately 500 fs) via fast internal conversion processes upon photoexcitation at 400 nm (Soret bands), which is much faster than the internal conversion process of approximately 1.2 ps observed for a monomeric Zn(II)porphyrin. The relaxation dynamics of the lowest excited states of the porphyrin tapes were accelerated from approximately 4.5 ps for the T2 dimer to approximately 0.3 ps for the T6 hexamer as the number of porphyrin units increases, being explained well by the energy gap law. The overall photophysical properties of the porphyrin tapes were observed to be in a sharp contrast to those of the orthogonal porphyrin arrays. The PPP-SCI calculated charge-transfer probability indicates that the lowest excited state of the porphyrin tapes (Tn) resembles a Wannier-type exciton closely, whereas the lowest excited state of the directly linked porphyrin arrays can be considered as a Frenkel-type exciton. Conclusively, these unique photophysical properties of the porphyrin tapes have aroused much interest in the fundamental photophysics of large flat organic molecules as well as in the possible applications as electric wires, IR sensors, and nonlinear optical materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号