首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this paper, we study the thermodynamics and the weak cosmic censorship conjecture of the nonlinear electrodynamics black hole under the scattering of a charged complex scalar field.According to the energy and charge fluxes of the scalar field, the variations of this black hole's energy and charge can be calculated during an infinitesimal time interval. With scalar field scattering, the variation of the black hole is calculated in the extended and normal phase spaces.In the normal phase space, the cosmological constant and the normalization parameter are fixed,and the first and second laws of thermodynamics can also be satisfied. In the extended phase space, the cosmological constant and the normalization parameter are considered as thermodynamic variables, and the first law of thermodynamics is valid, but the second law of thermodynamics is not valid. Furthermore, the weak cosmic censorship conjecture is both valid in the extended and normal phase spaces.  相似文献   

2.
As a charged fermion drops into a BTZ black hole, the laws of thermodynamics and the weak cosmic censorship conjecture are investigated in both the normal and extended phase space, where the cosmological parameter and renormalization length are regarded as extensive quantities. In the normal phase space, the first and second law of thermodynamics, and the weak cosmic censorship are found to be valid. In the extended phase space, although the first law and weak cosmic censorship conjecture remain valid, the second law is dependent on the variation of the renormalization energy d K. Moreover, in the extended phase space, the configurations of extremal and near-extremal black holes are not changed, as they are stable, while in the normal phase space, the extremal and near-extremal black holes evolve into non-extremal black holes.  相似文献   

3.
In this work we consider black hole solutions to Einstein's theory coupled to a nonlinear power-law electromagnetic field with a fixed exponent value. We study the extended phase space thermodynamics in canonical and grand canonical ensembles, where the varying cosmological constant plays the role of an effective thermodynamic pressure. We examine thermodynamical phase transitions in such black holes and find that both first- and second-order phase transitions can occur in the canonical ensemble while, for the grand canonical ensemble, Hawking–Page and second-order phase transitions are allowed.  相似文献   

4.

The thermodynamics and the weak cosmic censorship conjecture (WCCC) in a high dimensional RN ? AdSd+?1 black hole with energy-momentum relation are investigated by absorbing a charged particle in the phase space. In the RN ? AdSd+?1 space-time, the cosmological constant Λ is treated as a thermodynamic pressure and its conjugate quantity as a thermodynamic volume. We use the energy-momentum relation of the absorbed particle to discuss the thermodynamics of the RN ? AdSd+?1 black hole and to prove the WCCC in the phase space. Based on this assumption, we find that the first law and the second law of thermodynamics are satisfied in normal phase space. On the other hand, in the extend phase space, the first law is satisfied and the second law is violated. Then we study the WCCC in the phase space, we find that the WCCC is satisfied for an extreme black and a near-extreme black hole in the normal phase space. In the extend phase space, the WCCC is satisfied for an extreme black hole and unidentified for a near-extreme black hole.

  相似文献   

5.
By throwing a test charged particle into a Reissner-Nordstrom (RN) black hole, we test the validity of the first and second laws of thermodynamics and the weak cosmic censorship conjecture (WCCC) with two types of boundary conditions: the asymptotically anti-de Sitter (AdS) space and a Dirichlet cavity wall placed in an asymptotically flat space. For the RN-AdS black hole, the second law of thermodynamics is satisfied, and the WCCC is violated for both extremal and near-extremal black holes. For the RN black hole in a cavity, the entropy can either increase or decrease depending on the change in the charge, and the WCCC is satisfied/violated for the extremal/near-extremal black hole. Our results indicate that there may be a connection between the black hole thermodynamics and the boundary condition imposed on the black hole.  相似文献   

6.
We consider a holographic extended phase space in the presence of Reissner-Nordstrom-Anti-de Sitter(RNAdS) and Born-Infeld-Anti-de Sitter(BI-AdS) black holes in the bulk. In this extended phase space the cosmological constant is investigated as pressure and volume is defined as the codimension one-time slice in the bulk geometry enclosed by the minimal area appearing in the computation of the holographic entanglement entropy. These thermodynamics quantities can serve as probes of the underlying phase transition dictated by black hole thermodynamics, but do not describe different structures. We find that the isocharges on the pressure-volume plane exhibit a Van der Waals-like structure, for RN-AdS black holes in the background. For BI-AdS black holes, we observe the analogy with a Van der Waals liquid-gas system for βQ 1/2 and Reentrant phase transition for βQ 1/2 in the holographic extended phase space. The same holographic thermodynamic behavior is observed when we use the fidelity susceptibility as the volume and the cosmological constant as the pressure for RN-AdS black hole in the background.  相似文献   

7.
We investigate the thermodynamical properties of charged torus-like black holes and take it as the working substance to study the heat engines. In the extended phase space, by interpreting the cosmological constant as the thermodynamic pressure, we derive the thermodynamical quantities by the first law of black hole thermodynamics and obtain the equation of state. Then, we calculate the efficiency of the heat engine in the Carnot cycle as well as the rectangular cycle,and investigate how the efficiency changes with respect to volume. In addition, to avoid a negative temperature, we emphasize that the charge of this black hole cannot be arbitrary. Last,we check the calculation accuracy of a benchmark scheme and discuss the upper bound and lower bound for charged torus-like black hole in the scheme.  相似文献   

8.
Considering the cosmological constant as the pressure, this study addresses the laws of thermodynamics and weak cosmic censorship conjecture in the Reissner-Nordstr?m-AdS black hole surrounded by quintessence dark energy under charged particle absorption. The first law of thermodynamics is found to be valid as a particle is absorbed by the black hole. The second law, however, is violated for the extremal and near-extremal black holes, because the entropy of these black hole decrease. Moreover, we find that the extremal black hole does not change its configuration in the extended phase space, implying that the weak cosmic censorship conjecture is valid. Remarkably, the near-extremal black hole can be overcharged beyond the extremal condition under charged particle absorption. Hence, the cosmic censorship conjecture could be violated for the near-extremal black hole in the extended phase space. For comparison, we also discuss the first law, second law, and the weak cosmic censorship conjecture in normal phase space, and find that all of them are valid in this case.  相似文献   

9.
We present a class of regular black holes with cosmological constant A in nonlinear electrodynamics. Instead of usual singularity behind black hole horizon, all fields and curvature invariants are regular everywhere for the regular black holes. Through gauge invariant approach, the linearly dynamical stability of the regular black hole is studied. In odd-parity sector, we find that the A term does not appear in the master equations of perturbations, which shows that the regular black hole is stable under odd-parity perturbations. On the other hand, for the even-parity sector, the master equations are more complicated than the case without the cosmological constant. We obtain the sufficient conditions for stability of the regular black hole. We also investigate the thermodynamic properties of the regular black hole. and find that those thermodynamic quantities do not satisfy the differential form of first law of black hole thermodynamics. The reason for violating the first law is revealed.  相似文献   

10.
For charged black holes in Ho?ava–Lifshitz gravity, a second order phase transition takes place in extended phase space where the cosmological constant is taken as thermodynamic pressure. We relate the second order nature of phase transition to the fact that the phase transition occurs at a sharp temperature and not over a temperature interval. Once we know the continuity of the first derivatives of the Gibbs free energy, we show that all the Ehrenfest equations are readily satisfied. We study the effect of the perturbation of the cosmological constant as well as the perturbation of the electric charge on thermodynamic stability of Ho?ava–Lifshitz black hole. We also use thermodynamic geometry to study phase transition in extended phase space. We investigate the behavior of scalar curvature of Weinhold, Ruppeiner, and Quevedo metric in extended phase space of charged Ho?ava–Lifshitz black holes. It is checked if these curvatures could reproduce the result of specific heat for the phase transition.  相似文献   

11.
With the cosmological constant considered as a thermodynamic variable in the extended phase space, it is natural to study the thermodynamic cycles of the black hole, which is conjectured to be performed using renormalization group flow. We first investigate the thermodynamic cycles of a 4-dimensional asymptotically AdS f(R) black hole. Then we study the thermodynamic cycles of higher dimensional asymptotically AdS f(R) black holes. It is found that when ΔV ? ΔP, the efficiency of isobar-isochore cycles running between high temperature TH and low temperature TC will increase to its maximum value, which is exactly the Carnot cycles’ efficiency both in 4-dimensional and in higher dimensional cases. We speculate that this property is universal for AdS black holes, if there is no phase transition in the thermodynamic cycle. This result may deepen our understanding of the thermodynamics of the AdS black holes.  相似文献   

12.
Treating the cosmological constant as a dynamical variable, we investigate the thermodynamics and weak cosmic censorship conjecture(WCCC) of a charged Ad S black hole(BH) in the Rastall gravity. We determine the energy momentum relation of charged fermion at the horizon of the BH using the Dirac equation. Based on this relation, it is shown that the first law of thermodynamics still holds as a fermion is absorbed by the BH. However, the entropy of both the extremal and near-extremal BH decreases in the irreversible process, which means that the second law of thermodynamics is violated.Furthermore, we verify the validity of the WCCC by the minimum values of the metric function h(r) at its final state. For the extremal charged Ad S BH in the Rastall gravity, we find that the WCCC is always valid since the BH is extreme. While for the case of near-extremal BH, we find that the WCCC could be violable in the extended phase space(EPS), depending on the value of the parameters of the BH and their variations.  相似文献   

13.
This paper is devoted to studying the impact of thermal fluctuations on thermodynamics of rotating as well as charged anti-de Sitter black holes with the Newman–Unti–Tamburino(NUT)parameter. To this end, we derive the analytic expression of thermodynamic variables, namely the Hawking temperature, volume, angular velocity, and entropy within the limits of extended phase space. These variables meet the first law of thermodynamics as well as the Smarr relation in the presence of new NUT charge. To analyze the effects of quantum fluctuations, we derive the exact expression of corrected entropy, which yields modification in other thermodynamical equations of state. The local stability and phase transition of the considered black hole are also examined through specific heat. It is found that the NUT parameter increases the stability of small black holes, while the logarithmic corrections induce instability in the system.  相似文献   

14.
The first law of black hole thermodynamics has been shown to be valid in the extended phase space.However,the second law and the weak cosmic censorship conjecture have not been investigated extensively.We investigate the laws of thermodynamics and the weak cosmic censorship conjecture of an AdS black hole with a global monopole in the extended phase space in the case of charged particle absorption.It is shown that the first law of thermodynamics is valid,while the second law is violated for the extremal and near-extremal black holes.Moreover,we find that the weak cosmic censorship conjecture is valid only for the extremal black hole,and that it can be violated for the near-extremal black holes,which is different from the previous results.  相似文献   

15.
In this study, we apply two methods to consider the variation of massive black holes in both normal and extended thermodynamic phase spaces. The first method considers a charged particle being absorbed by the black hole, whereas the second considers a shell of dust falling into it. With the former method, the first and second laws of thermodynamics are always satisfied in the normal phase space; however, in the extended phase space, the first law is satisfied but the validity of the second law?of?thermodynamics depends upon the model parameters. With the latter method, both laws are valid. We argue that the former method's violation of the second law of thermodynamics may be attributable to the assumption that the change of internal energy of the black hole is equal to the energy of the particle. Finally, we demonstrate that the event horizon always ensures the validity of weak cosmic censorship in both phase spaces; this means that the violation of the second law of thermodynamics, arising under the aforementioned assumption, does not affect the weak cosmic censorship conjecture. This further supports our argument that the assumption in the first method is responsible for the violation and requires deeper treatment.  相似文献   

16.
Motivated by recent work, nonmonotonic behaviors of photon sphere radius can be used to reflect black hole phase transition for Reissner-Nordström-AdS (RN-AdS) black holes, we study the case of five-dimensional charged Gauss-Bonnet-AdS black holes in the reduced parameter space. We find that the nonmonotonic behaviors of photon sphere radius still exist. Using the coexistence line calculated from P-V plane, we capture the photon sphere radius of saturated small and large black holes (the boundary of the coexistence phase), then illustrate the reduced coexistence region. The results show that, reduced coexistence region decreases with charge Q but increases with Gauss-Bonnet coefficient α. When the charge vanishes, reduced coexistence region does not vary with Gauss-Bonnet coefficient α any more. In this case, the Gauss-Bonnet coefficient α plays the same role as the charge of five-dimensional RN-AdS black holes. Also, the situation of higher dimension is studied in the end.  相似文献   

17.
We discuss the P-V criticality and phase transition in the extended phase space of Born-Infeld AdS (BIAdS) black hole surrounded by quintessence dark energy, where the cosmological constant ∧ is identified with the thermodynamical pressure P. Comparing with Van der Waals(VdW)-like SBH/LBH phase transition of Born-Infeld AdS (BI-AdS) black hole, we find that the BI-AdS black hole surrounded by quintessence dark energy possesses lower critical temperature because of parameter a > 0, even disappears since the parameter a taking enough large values leads to Tc ≤ 0. Moreover, the interesting thermodynamic phenomenon of reentrant phase transition (RPT) are also observed, and the quintessence dark energy plays a similar role in this RPT.  相似文献   

18.
We present an exact three-dimensional massive Kiselev AdS black hole solution. This Kiselev black hole is neither perfectly fluid, nor is it the quintessential solution, but the BTZ black hole modified by the anisotropic matter. This black hole possesses an essential singularity at its radial origin and a single horizon whose radius will increase monotonically when the parameter of the anisotropic matter field ω decreases. We calculate all thermodynamic quantities and find that the first law of thermodynamics of this massive Kiselev AdS black hole can be protected, while the consistent Smarr formula is only held in the extended thermodynamic phase space. After examining the sign of free energy, we conclude that there is no Hawking-Page transition since the massive Kiselev AdS black hole phase is always thermodynamically favored. Moreover, we study the phase transition between the Kiselev AdS black hole and BTZ black hole by considering the matchings for their temperature. We find that the Kiselev AdS black hole is still a thermodynamically more preferred phase, because it always has a smaller amount of free energy than the BTZ black hole, which seems to indicate that the anisotropic matter field may emerge naturally in BTZ black hole spacetime under some thermal fluctuations. We also show a first order phase transition between the Kiselev AdS black hole phase with -1w -1/2 and the black hole phase with -1/2w0. As the Kiselev AdS black hole has some notable features on the phase transition of black holes in three dimensions, it provides important clues to further investigate these both surprising and similar behaviors in four and higher dimensions.  相似文献   

19.
We study the PV criticality and phase transition in the extended phase space of anti-de Sitter (AdS) black holes in higher-dimensional de Rham, Gabadadze and Tolley (dRGT) massive gravity, treating the cosmological constant as pressure and the corresponding conjugate quantity is interpreted as thermodynamic volume. Besides the usual small/large black hole phase transitions, the interesting thermodynamic phenomena of reentrant phase transitions (RPTs) are observed for black holes in all \(d\ge 6\)-dimensional spacetime when the coupling coefficients \(c_i m^2\) of massive potential satisfy some certain conditions.  相似文献   

20.
From a new perspective, we discuss the thermodynamic entropy of (n+2)-dimensional Reissner-Nordströmde Sitter (RNdS) black hole and analyze the phase transition of the effective thermodynamic system. Considering the correlations between the black hole event horizon and the cosmological horizon, we conjecture that the total entropy of the RNdS black hole should contain an extra term besides the sum of the entropies of the two horizons. In the lukewarm case, the effective temperature of the RNdS black hole is the same as that of the black hole horizon and the cosmological horizon. Under this condition, we obtain the extra contribution to the total entropy. With the corrected entropy, we derive other effective thermodynamic quantities and analyze the phase transition of the RNdS black hole in analogy to the usual thermodynamic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号