首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The physicochemical properties of a novel series of symmetric 1,3-dialkylamidopropane-based cationic amphiphiles [M. Sheikh, J. Feig, B. Gee, S. Li, M. Savva, In vitro lipofection with novel series of symmetric 1,3-dialkoylamidopropane-based cationic surfactants containing single primary and tertiary amine polar head groups, Chem. Phys. Lipids 124 (2003) 49-61] were studied by several techniques, in an effort to correlate cationic lipid structure with transfection efficacy. It was found that only the unsubstituted amine and tertiary amine dioleoyl derivatives 1,3lmp5 and 1,3lmt5, respectively, mediated in vitro transfection activity in the absence of helper lipids. This activity pattern was consistent with ethidium bromide fluorescence quenching studies, which indicated that only these two derivatives bound to and efficiently condense plasmid DNA at physiological pH. Dynamic light scattering indicated that lipoplexes made by these two cationic lipids were relatively small particles below 1 microm, in sharp contrast to lipoplexes bigger than 3 microm composed of saturated cationic derivatives. Transmission electron microscopy studies clearly indicated that cationic lipid dispersions made by saturated derivatives form multilamellar tubules at physiological pH. Calorimetric studies showed that cationic amphiphiles with saturated acyl chains longer than 12 carbons exhibit solid-to-liquid crystalline phase transitions above 37 degrees C. In agreement with the microscopy and calorimetry studies, Langmuir film balance experiments indicated that saturated derivatives with hydrophobic chains longer that 12 carbons are not well hydrated and exist at a chain-ordered state at ambient temperature. Calculation of compressibility moduli from monolayer compression isotherms at 23 degrees C suggested that monolayers made by cationic lipids bearing saturated acyl chains are less compressible relative to those of the dioleoyl derivatives 1,3lmp5 and 1,3lmt5. In conclusion, high hydration, increased fluidity and high elasticity of cationic lipid assemblies in isolation, all correlate with high in vitro transfection activity.  相似文献   

2.
The lipid bis(guanidinium)-tris(2-aminoethyl)amine-cholesterol (BGTC) is a cationic cholesterol derivative bearing guanidinium polar headgroups which displays high transfection efficiency in vitro and in vivo when used alone or formulated as liposomes with the neutral colipid 1,2-di-[ cis-9-octadecenoyl]- sn-glycero-3-phosphoethanolamine (DOPE). Since transfection may be related to the structural and physicochemical properties of the self-assembled supramolecular lipid-DNA complexes, we used the Langmuir monolayer technique coupled with Brewster angle microscopy (BAM) and polarization modulation infrared reflection absorption spectroscopy (PMIRRAS) to investigate DNA-BGTC and DNA-BGTC/DOPE interactions at the air/water interface. We herein show that BGTC forms stable monolayers at the air/water interface. When DNA is injected into the subphase, it adsorbs to BGTC at 20 mN/m. Whatever the (+/-) charge ratio of the complexes used, defined as the ratio of positive charges of BGTC in the monolayer versus negative charges of DNA injected in the subphase, the DNA interacts with the cationic lipid and forms either an incomplete (no constituent in excess) or a complete (DNA in excess) monolayer of oriented double strands parallel to the lipid monolayer plan. We also show that, under a homogeneous BGTC/DOPE (3/2) monolayer at 20 mN/m, DNA adsorbs homogeneously to form an organized but incomplete layer whatever the charge ratio used (DNA in default or in excess). Compression beyond the collapse of these mixed DNA-BGTC/DOPE systems leads to the formation of dense DNA monolayers under an asymmetric lipid bilayer with a bottom layer of BGTC in contact with DNA and a top layer mainly constituted of DOPE. These results allow a better understanding of the mechanisms underlying the formation of the supramolecular BGTC-DNA complexes efficient for gene transfection.  相似文献   

3.
We have synthesized five new cholesterol based gemini cationic lipids possessing hydroxyethyl (-CH(2)CH(2)OH) function on each head group, which differ in the length of the polymethylene spacer chain. These gemini lipids are important for gene delivery processes as they possess pre-optimized molecular features, e.g., cholesterol backbone, ether linkage and a variable spacer chain between both the headgroups of the gemini lipids. Cationic liposomes were prepared from each of these lipids individually and as a mixture of individual cationic gemini lipid and 1,2-dioleoyl phosphatidylethanolamine (DOPE). Each gemini lipid based formulation induced better transfection activity than that of their monomeric counterpart. One such gemini lipid with a -(CH(2))(12)- spacer, HG-12, showed dramatic increase in the mean fluorescence intensity due to the expression of green-fluorescence protein (GFP) in the presence of 10% FBS compared to the conditions where there was no serum. Other gemini lipids retained their gene transfection efficiency without any marked decrease in the presence of serum. The only exception was seen with the gemini with a -(CH(2))(3)- spacer, HG-3, which on gene transfection in the presence of 10% FBS lost ~70% of its transfection efficiency. Overall the gemini lipid with a -(CH(2))(5)- spacer, HG-5, showed the highest transfection activity at N/P (lipid/DNA) ratio of 0.5 and lipid : DOPE molar ratio of 2. Upon comparison of the relevant parameters, e.g., %-transfected cells, the amount of DNA transfected to each cell and %-cell viability all together against Lipofectamine 2000, one of the best commercial transfecting agents, the optimized lipid formulation based on DOPE/HG-5 was found to be comparable. In terms of its ability to induce gene-transfer in the presence of serum and shelf-life DOPE/HG-5 liposome was found to be superior to its commercial counterpart. Confocal imaging analysis confirmed that in the presence of 10% serum using a Lipid : DOPE of 1 : 4 and N/P charge ratio of 0.75 with 1.2 μg DNA per well, HG-5 is better than Lipofectamine 2000.  相似文献   

4.
The success of nucleic acid delivery requires the development of safe and efficient delivery vectors that overcome cellular barriers for effective transport. Herein we describe the synthesis of a series of novel, single-chain rigid cationic carotenoid lipids and a study of their preliminary in vitro siRNA delivery effectiveness and cellular toxicity. The efficiency of siRNA delivery by the single-chain lipid series was compared with that of known cationic lipid vectors, 3β-[N-(N',N'-dimethylaminoethane)carbamoyl]-cholesterol (DC-Chol) and 1,2-dimyristoyl-sn-glyceryl-3-phosphoethanolamine (EPC) as positive controls. All cationic lipids (controls and single-chain lipids) were co-formulated into liposomes with the neutral co-lipid, 1,2-dioleolyl-sn-glycerol-3-phosphoethanolamine (DOPE). Cationic lipid-siRNA complexes of varying (+/-) molar charge ratios were formulated for delivery into HR5-CL11 cells. Of the five single-chain carotenoid lipids investigated, lipids 1, 2, 3 and 5 displayed significant knockdown efficiency with HR5-CL11 cells. In addition, lipid 1 exhibited the lowest levels of cytotoxicity with cell viability greater than 80% at all (+/-) molar charge ratios studied. This novel, single-chain rigid carotenoid-based cationic lipid represents a new class of transfection vector with excellent cell tolerance, accompanied with encouraging siRNA delivery efficiency.  相似文献   

5.
Transfection of cells by DNA (for the purposes of gene therapy) can be effectively engineered through the use of cationic lipid/DNA "lipoplexes", although the transfection efficiency of these lipoplexes is sensitive to the neutral "helper" lipid included. Here, neutron reflectivity has been used to investigate the role of the helper lipid present during the interaction of cationic lipid vesicles with model cell membranes. Dimethyldioctadecylammonium bromide (DDAB) vesicles were formed with two different helper lipids, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) and cholesterol, and the interaction of these vesicles with a supported phospholipid bilayer was determined. DOPE-containing vesicles were found to interact faster with the membrane than those containing cholesterol, and vesicles containing either of the neutral helper lipids were found to interact faster than when DDAB alone was present. The interaction between the vesicles and the membrane was characterized by an exchange of lipid between the membrane and the lipid aggregates in solution; the deposition of vesicle bilayers on the surface of the membrane was not apparent.  相似文献   

6.
A convergent synthesis of cationic amphiphilic compounds is reported here with the use of the phosphonodithioester–amine coupling (PAC) reaction. This versatile reaction occurs at room temperature without any catalyst, allowing binding of the lipid moiety to a polar head group. This strategy is illustrated with the use of two lipid units featuring either two oleyl chains or two-branched saturated lipid chains. The final cationic amphiphiles were evaluated as carriers for plasmid DNA delivery in four cell lines (A549, Calu3, CFBE and 16HBE) and were compared to standards (BSV36 and KLN47). These new amphiphilic derivatives, which were formulated with DOPE or DOPE-cholesterol as helper lipids, feature high transfection efficacies when associated with DOPE. The highest transfection efficacies were observed in the four cell lines at low charge ratios (CR = 0.7, 1 or 2). At these CRs, no toxic effects were detected. Altogether, this new synthesis scheme using the PAC reaction opens up new possibilities for investigating the effects of lipid or polar head groups on transfection efficacies.  相似文献   

7.
The compaction of calf thymus DNA (CT-DNA) by cationic liposomes constituted by a 1:1 mixture of a cationic lipid, 1,2-distearoyl-3-(trimethylammonio)propane chloride (DSTAP), and a zwitterionic lipid, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE, null net charge at pH = 7.4), has been evaluated in aqueous buffered solution at 298.15 K by means of conductometry, electrophoretic mobility, cryo-TEM, and fluorescence spectroscopy techniques. The results reveal that DSTAP/DOPE liposomes are mostly spherical and unilamelar, with a mean diameter of around 77 +/- 20 nm and a positively charged surface with a charge density of sigmazeta = (21 +/- 1) x 10(-3) C m(-2). When CT-DNA is present, the genosomes DSTAP/DOPE/CT-DNA, formed by means of a surface electrostatic interaction, are generally smaller than the liposomes. Furthermore, they show a tendency to fuse forming cluster-type structures when approaching isoneutrality, which has been determined by the electrochemical methods at around (L/D)phi = 5.6. The analysis of the decrease on the fluorescence emission of the fluorophore ethidium bromide, EtBr, initially intercalated between DNA base pairs, as long as the genosomes are formed has permitted us to confirm the electrostatic character of the DNA-liposome interaction.  相似文献   

8.
The effect of serum on structural properties of dimethyl-dioctadecyl-ammonium bromide (DDAB)–1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) liposomes and DDAB–DOPE/DNA lipoplexes has been investigated by energy dispersive X-ray diffraction (EDXD) technique, at different cationic lipid/DNA weight ratios (ρ). The role of serum on the size of lipoplexes has also been studied by dynamic light scattering. Lipoplex transfection efficiency (TE) as a function of ρ, and lipoplex toxicity to C6 rat glioma cells have been evaluated in Dulbecco's Modified Eagle Medium (DMEM) with and without serum. A multi-parametric analysis concerning the role of size, structure and cytotoxicity on transfection efficiency contributes to explain the experimental observation that 3β-[N-(N′,N′-dimethylaminoethane)carbamoyl]-cholesterol (DC-Chol)–DOPE/DNA transfect C6 cells better than DDAB–DOPE/DNA lipoplexes.  相似文献   

9.
Multicomponent cationic lipid-DNA complexes (lipoplexes) were prepared by adding linear DNA to mixed lipid dispersions containing two populations of binary cationic liposomes and characterized by means of small angle X-ray scattering (SAXS). Four kinds of cationic liposomes were used. The first binary lipid mixture was made of the cationic lipid (3'[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol (DC-Chol) and the neutral helper lipid dioleoylphosphocholine (DOPC) (DC-Chol/DOPC liposomes), the second one of the cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and the neutral dioleoylphosphatidylethanolamine (DOPE) (DOTAP/DOPE liposomes), the third one of DC-Chol and DOPE (DC-Chol/DOPE liposomes), and the fourth one of DOTAP and DOPC (DOTAP/DOPC liposomes). Upon DNA-induced fusion of liposomes, large lipid mixing at the molecular level occurs. As a result, highly organized mixed lipoplexes spontaneously form with membrane properties intermediate between those of starting liposomes. By varying the composition of lipid dispersions, different DNA packing density regimes can also be achieved. Furthermore, occurring lipid mixing was found to induce hexagonal to lamellar phase transition in DOTAP/DOPE membranes. Molecular mechanisms underlying experimental findings are discussed.  相似文献   

10.
The effect of serum on structural properties of dimethyl-dioctadecyl-ammonium bromide (DDAB)–1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) liposomes and DDAB–DOPE/DNA lipoplexes has been investigated by energy dispersive X-ray diffraction (EDXD) technique, at different cationic lipid/DNA weight ratios (ρ). The role of serum on the size of lipoplexes has also been studied by dynamic light scattering. Lipoplex transfection efficiency (TE) as a function of ρ, and lipoplex toxicity to C6 rat glioma cells have been evaluated in Dulbecco's Modified Eagle Medium (DMEM) with and without serum. A multi-parametric analysis concerning the role of size, structure and cytotoxicity on transfection efficiency contributes to explain the experimental observation that 3β-[N-(N′,N′-dimethylaminoethane)carbamoyl]-cholesterol (DC-Chol)–DOPE/DNA transfect C6 cells better than DDAB–DOPE/DNA lipoplexes.  相似文献   

11.
A 1:1 mixture of the cationic lipid 3beta-[ N-( N', N'-dimethylaminoethane)-carbamoyl]cholesterol hydrochloride (DC-Chol) and the zwitterionic lipid, 1,2-dioleoyl- sn-glycero-3-phosphoetanolamine (DOPE), has been used to compact calf-thymus DNA (CT-DNA) in aqueous buffered solution at 298.15 K. The formation process of this lipoplex has been analyzed by means of electrophoretic mobility, cryo-TEM, dynamic light scattering, and fluorescence spectroscopy techniques. The experimental results indicate that DC-Chol/DOPE liposomes are mostly spherical and unilamellar, with a mean diameter of around 99 +/- 10 nm and a bilayer with a thickness of 4.5 +/- 0.5 nm. In the presence of CT-DNA, DC-Chol/DOPE/CT-DNA lipoplexes are formed by means of a strong entropically driven surface electrostatic interaction, as confirmed by zeta potential and fluorescence results, as a consequence of which DNA is compacted and condensed at the surface of the cationic liposomes. The negative charges of DNA phosphate groups are neutralized by the positive charges of cationic liposomes at the isoneutrality L/ D ratio, ( L/ D) varphi around 4, obtained from electrophoretic, fluorescence, and DLS measurements. The decrease in the fluorescence emission intensity of ethidium bromide, EtBr, initially intercalated between DNA base pairs, as long as the association between the biopolymer and the cationic liposomes takes place has permitted one to confirm its electrostatic character as well as to evaluate the different microenvironments of varying polarity of DNA-double helix, liposomes, and/or lipoplexes. Electronic microscopy reveals a rich scenario of possible nanostructures and morphologies for the lipoplexes, from unilamellar DNA-coated liposomes to multilamellar lipoplexes passing through cluster-like structures and several intermediate morphologies.  相似文献   

12.
Positively-charged gene delivery agents, such as cationic liposomes, typically prepared by mixing a cationic lipid and a neutral lipid in a 1 : 1 molar ratio, exhibit a fundamental flaw: on the one hand, the charge encourages cell uptake; on the other hand, the charge leads to aggregation in vivo with anionic serum components. We herein report a more phase-stable analogue of the zwitterionic and fusogenic lipid DOPE that allows for the reduction of the cationic lipid component of the liposome from 50 to 9 mol% with almost no apparent loss in transfection activity. This reduction in charge may induce important in vivo stability whilst still imparting high cell uptake and transgene expression.  相似文献   

13.
In an effort to probe the importance of endosomal protonation in pH-sensitive, cationic, lipid-mediated, non-viral gene delivery, we have designed and synthesized a novel cholesterol-based, endosomal pH-sensitive, histidylated, cationic amphiphile (lipid 1), its less pH-sensitive counterpart with an electron-deficient, tosylated histidine head group (lipid 2) as well as a third new cholesterol-based, cationic lipid containing no histidine head group (lipid 3). For all the novel liposomes and lipoplexes, we evaluated hysicochemical characteristics, including lipid:DNA interactions, global surface charge, and sizes. As anticipated, lipid 2 showed lower efficacies than lipid 1 for the transfection of 293T7 cells with the cytoplasmic gene expression vector pT7Luc at lipid:DNA mole ratios of 3.6:1 and 1.8:1; both lipids were greatly inhibited in the presence of Bafilomycin A1. This demonstrates the involvement of imidazole ring protonation in the endosomal escape of DNA. Conversely, endosome escape of DNA with lipid 3 seemed to be independent of endosome acidification. However, with nuclear gene expression systems in 293T7, HepG2, and HeLa cells, the transfection efficacies of lipid 2 at a lipid:DNA mole ratio of 3.6:1 were found to be either equal to or somewhat lower than those of lipids 1 and 3. Interestingly, at a lipid:DNA mole ratio of 1.8:1, lipids 2 and 3 were remarkably more transfection efficient than lipid 1 in both HepG2 and HeLa cells. Mechanistic implications of such contrasting relative transfection profiles are delineated.  相似文献   

14.
Recently, membrane charge density of lipid membranes, sigma M, has been recognized as a universal parameter that controls the transfection efficiency of complexes made of binary cationic liposomes and DNA (binary lipoplexes). Three distinct regimes, most likely related to interactions between complexes and cells, have also been identified. The purpose of this work was to investigate the transfection efficiency behavior of multicomponent lipoplexes in the regime of optimal membrane charge density (1< sigma M < 2 x 10 (-2) e/A (2)) and compare their performance with that of binary lipoplexes usually employed for gene delivery purposes. We found remarkable differences in transfection efficiency due to lipid composition, with maximum in efficiency being obtained when multicomponent lipoplexes were used to transfect NIH 3T3 cells, while binary lipoplexes were definitely less efficient. These findings suggested that multicomponent systems are especially promising lipoplex candidates. With the aim of providing new insights into the mechanism of transfection, we investigated the structural evolution of lipoplexes when interacting with anionic (cellular) lipids by means of synchrotron small-angle X-ray diffraction (SAXD), while the extent of DNA release upon interaction with anionic lipids was measured by electrophoresis on agarose gels. Interestingly, a clear trend was found that the transfection activity increased with the number of lipid components. These results highlight the compositional properties of carrier lipid/cellular lipid mixtures as decisive factors for transfection and suggest a strategy for the rational design of superior cationic lipid carriers.  相似文献   

15.
When considering a family of cationic lipids designed for gene delivery, the nature of the cationic polar head probably has a great influence on both the transfection efficacy and toxicity. Starting from a cationic lipothiophosphoramidate bearing a trimethylammonium headgroup, we report herein the impact on gene transfection activity of the replacement of the trimethylammonium moiety by a trimethylphosphonium or a trimethylarsonium group. A series of three different human epithelial cell lines were used for the experimental transfection studies (HeLa, A549 and 16HBE14o(-)). The results basically showed that such structural modifications of the cationic headgroup can lead to a high transfection efficacy at low lipid/DNA charge ratios together with a low cytotoxicity. It thus appears that the use of a trimethylarsonium cationic headgroup for the design of efficient gene carriers, which was initially proposed in the lipophosphoramidate series, can be extended to other series of cationic lipids and might therefore have great potential for the development of novel non-viral vectors in general.  相似文献   

16.
The morphology of aqueous solutions of polyelectrolytes and oppositely charged lipids is the subject of extensive colloid science research, because of their application in industry and medicine, the latter especially for gene therapy. In this work, we show that complexes of two different cationic lipids with the polyelectrolyte sodium poly(acrylic acid), PAA, share similar morphology with the complexes of those lipids with nucleic acids, implying a broader and universal packing phenomenon. We characterized by direct-imaging cryogenic-temperature transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), and zeta (ζ)-potential two cationic lipids, 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and bis(11-ferrocenylundecyl) dimethylammonium bromide (BFDMA), which are used in gene transfection, at equivalent lipid/polyelectrolyte charge ratio. Our results revealed that, for both types of complexes, onion-like multilamellar nanostructures formed, which exhibited similar morphology as in complexes of DNA or oligonucleotides (lipoplexes), based on the same lipids. Our findings suggest that the onion-like packing may be energetically favorable for a wide range of polyelectrolyte-liposome systems, from oligonucleotides and DNA to PAA.  相似文献   

17.
Two types of complexes were prepared from a cationic cholesterol derivative, dioleoylphos-phatidylcholine and DNA. Depending on the preparation procedure complexes were either dense snarls of lipid covered DNA (type A) or multilayer liposomes with DNA between layers (type B). The transfection efficiency of the snarl-shaped complexes was low but positive. The transfection efficiency of the liposome-shaped complexes was zero, while DNA release upon their interaction with anionic liposomes was 1.7 times higher. The differences in transfection efficacy and DNA release could not be ascribed to the difference in resistance of complexes to decomposition upon interaction with anionic liposomes or intracellular environment since the lipid composition of complexes is the same. Instead the complexes in which lipoplex phase is more continuous (type A) should require more anionic lipids or more time within a cell for complete decomposition. Prolonged life time should lead to the higher probability of DNA expression.  相似文献   

18.
Investigation of DNA interactions with cationic lipids is of particular importance for the fabrication of biosensors and nanodevices. Furthermore, lipid/DNA complexes can be applied for direct delivery of DNA‐based biopharmaceuticals to damaged cells as non‐viral vectors. To obtain more effective and safer DNA vectors, the new cationic lipids 2‐tetradecylhexadecanoic acid‐{2‐[(2‐aminoethyl)amino]ethyl}amide (C I ) and 2‐tetradecylhexadecanoic acid‐2‐[bis(2‐aminoethyl)amino]ethylamide (C II ) were synthesized and characterized. The synthesis, physical–chemical properties and first transfection and toxicity experiments are reported. Special attention was focused on the capability of C I and C II to complex DNA at low and high subphase pH values. Langmuir monolayers at the air/water interface represent a well‐defined model system to study the lipid/DNA complexes. Interactions and ordering of DNA under Langmuir monolayers of the new cationic lipids were studied using film balance measurements, grazing incidence X‐ray diffraction (GIXD) and X‐ray reflectivity (XR). The results obtained demonstrate the ability of these cationic lipids to couple with DNA at low as well as at high pH value. Moreover, the observed DNA structuring seems not to depend on subphase pH conditions. An influence of the chemical structure of the lipid head group on the DNA binding ability was clearly observed. Both compounds show good transfection efficacy and low toxicity in the in vitro experiments indicating that lipids with such structures are promising candidates for successful gene delivery systems.  相似文献   

19.
The synthesis of cationic lipo-thiophosphoramidates, a new family of cationic lipids designed for gene delivery, is reported herein. This new class of lipids is less polar than its oxygenated equivalent the lipo-phosphoramidates. Fluorescence anisotropy and FRET were used to determine the fluidity and fusogenicity of the lipo-phosphoramidates 3a-b and lipo-thiophosphoramidates 7a-b. The determination of both the size and the zeta potential of the nano-objects (liposomes and lipoplexes) and the determination of the DNA binding ability of the liposomes have completed the physico-chemical characterizations of the cationic lipids studied. Finally, the cationic lipids 3a-b and 7a-c have been evaluated as synthetic vectors for gene transfection into a variety of mammalian cell lines. The lipo-thiophosphoramidate 7a proved to be an efficient and low toxicity synthetic vector even when used at low lipid to DNA charge ratios.  相似文献   

20.
Reported here is the correlation between the transfection efficiency of cationic liposome/DNA complexes (lipoplexes) and the structural evolution that they undergo when interacting with anionic membrane lipids. Multicomponent lipoplexes, incorporating from three to six lipid species simultaneously, presented a much higher transfection efficiency than binary lipoplexes, which are more commonly used for gene-delivery purposes. The discovery that a high transfection efficiency can be achieved by employing multicomponent complexes at a lower-than-ever-before membrane charge density of lipoplexes was of primary significance. Synchrotron small-angle X-ray diffraction (SAXD) experiments showed that anionic liposomes made of dioleoylphosphatidylglycerol (DOPG) disintegrated the lamellar phase of lipoplexes. DNA unbinding was measured by electrophoresis on agarose gels. Most importantly, structural changes induced by anionic lipids strictly depended on the lipid composition of lipoplexes. We found evidence of the existence of three different regimes of stability related to the interaction between complexes and anionic membranes. Both unstable (with low membrane charge density, sigmaM) and highly stable lipoplexes (with high sigmaM) exhibited low transfection efficiency whereas highly efficient multicomponent lipoplexes exhibited an "optimal stability". This intermediate regime reflects a compromise between two opposing constraints: protection of DNA in the cytosol and endosomal escape. Here we advance the concept that structural stability, upon interaction with cellular anionic lipids, is a key factor governing the transfection efficiency of lipoplexes. Possible molecular mechanisms underlying experimental observations are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号