首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We perform fully resolved direct numerical simulations of an isolated particle subjected to free-stream turbulence in order to investigate the effect of turbulence on the drag and lift forces at the level of a single particle, following Bagchi and Balachandar’s work (Bagchi and Balachandar in Phys Fluids 15:3496–3513, 2003). The particle Reynolds numbers based on the mean relative particle velocity and the particle diameter are Re?=?100, 250 and 350, which covers three different regimes of wake evolution in a uniform flow: steady axisymmetric wake, steady planar symmetric wake, and unsteady planar symmetric vortex shedding. At each particle Reynolds number, the turbulent intensity is 5–10% of the mean relative particle velocity, and the corresponding diameter of the particle is comparable to or larger than the Kolmogorov scale. The simulation results show that standard drag values determined from uniform flow simulations can accurately predict the drag force if the turbulence intensity is sufficiently weak (5% or less compared to the mean relative velocity). However, it is shown that for finite-sized particles, flow non-uniformity, which is usually neglected in the case of the small particles, can play an important role in determining the forces as the relative turbulence intensity becomes large. The influence of flow non-uniformity on drag force could be qualitatively similar to the Faxen correction. In addition, finite-sized particles at sufficient Reynolds number are inherently subjected to stochastic forces arising from their self-induced vortex shedding in addition to lift force arising from the local ambient flow properties (vorticity and strain rate). The effect of rotational and strain rate of the ambient turbulence seen by the particle on the lift force is explored based on the conditional averaging using the generalized representation of the quasi-steady force proposed by Bagchi and Balachandar (J Fluid Mech 481:105–148, 2003). From the present study, it is shown that at Re?=?100, the lift force is mainly influenced by the surrounding turbulence, but at Re = 250 and 350, the lift force is affected by the wake structure as well as the surrounding turbulence. Thus, for a finite-sized particle of sufficient Reynolds number supporting self-induced vortex shedding, the lift force will not be completely correlated with the ambient flow. Therefore, it appears that in order to reliably predict the motion of a finite-sized particle in turbulence, it is important to incorporate both a deterministic component and a stochastic component in the force model. The best deterministic contribution is given by the conditional average. The influence of ambient turbulence at the scale of the particle, which are not accounted for in the deterministic contribution, can be considered in stochastic manner. In the modeling of lift force, additional stochastic contribution arising from self-induced vortex shedding must also be included.  相似文献   

2.
A numerical study of history forces acting on a spherical particle in a linear shear flow, over a range of finite Re, is presented. In each of the cases considered, the particle undergoes rapid acceleration from Re1 to Re2 over a short-time period. After acceleration, the particle is maintained at Re2 in order to allow for clean extraction of drag and lift kernels. Good agreement is observed between current drag kernel results and previous investigations. Furthermore, ambient shear is found to have little influence on the drag kernel. The lift kernel is observed to be oscillatory, which translates to a non-monotonic change in lift force to the final steady state. In addition, strong dependence on the start and end conditions of acceleration is observed. Unlike drag, the lift history kernel scales linearly with Reynolds number and shear rate. This behavior is consistent with a short-time inviscid evolution. A simple expression for the lift history kernel is presented.  相似文献   

3.
Computation of a turbulent dilute gas–solid channel flow has been undertaken to study the influence of using wall-corrected drag coefficients and of the lift force on the dispersed phase characteristics. The incompressible Navier–Stokes equations governing the carrier flow were solved by using a direct numerical simulation approach and coupled with a Lagrangian particle tracking. Calculations were performed at Reynolds number based on the wall-shear velocity and channel half-width, Reτ ≈ 184, and for three different sets of solid particles. For each particle set, two cases were examined, in the first one the particle motion was governed by both drag and lift wall-corrected forces, whereas in the other one, the standard drag force (not corrected) was solely acting. The lift force model used represents the most accurate available expression since it accounts for weak and strong shear as well as for wall effects. For this study, we considered elastic collisions for particles contacting the walls and that no external forces were acting. Present results indicate that the use of the lift force and of the drag corrections does not lead to significant changes in the statistical properties of the solid phase, at the exception of some statistics for the high inertia particles.  相似文献   

4.
This paper presents results obtained from a numerical simulation of a two-dimensional (2-D) incompressible linear shear flow over a square cylinder. Numerical simulations are performed, using the lattice Boltzmann method, in the ranges of 50⩽Re⩽200 and 0⩽K⩽0.5, where Re and K are the Reynolds number and the shear rate, respectively. The effect of the shear rate on the frequency of vortex shedding from the cylinder, and the lift and drag forces exerted on the cylinder are quantified together with the flow patterns around the cylinder. The present results show that vortex structure behind the cylinder is strongly dependant on both the shear rate and Reynolds number. When Re=50, a small K can disturb the steady state and cause an alternative vortex shedding with uneven intensity. In contrast, a large value of K will suppress the vortex shedding from the cylinder. When Re>50, the differences in the strength and size of vortices shed from the upper and lower sides of the cylinder become more pronounced as K increases. Vortex shedding disappears when K is larger than a critical value, which depends on Re. The flow patterns around the cylinder for different Re tend towards self-similarity with increasing K. The lift and drag forces exerted on the cylinder, in general, decrease with increasing K. Unlike a shear flow past a circular cylinder, the vortex shedding frequency past a square cylinder decreases with increasing the shear rate. A significant reduction of the drag force occurs in the range 0.15<K<0.3.  相似文献   

5.
Wind tunnel experiments were conducted for the flow around a single flat plate and through an array of three parallel flat plates at different angles of incidence to compare their lift and drag coefficients for several values of the Reynolds number around 105 and for three aspect ratio values. The selected cascade configuration is of interest for a particular type of tidal hydrokinetic energy converter. The main differences in the lift and drag forces are discussed, finding that for a plate in a cascade the maximum lift coefficient takes place at a quite different angle of attack, depending on the aspect ratio. The optimal conditions for extracting power from a tidal current are analyzed.  相似文献   

6.
The two-dimensional flow around a rotating cylinder is investigated numerically using a vorticity forces formulation with the aim of analyzing quantitatively the flow structures, and their evolutions, that contribute to the lift and drag forces on the cylinder. The Reynolds number considered, based on the cylinder diameter and steady free stream speed, is Re=200, while the non-dimensional rotation rate (ratio of the surface speed and free stream speed) selected was α=1 and 3. For α=1 the wake behind the cylinder for the fully developed flow is oscillatory due to vortex shedding, and so are the lift and drag forces. For α=3 the fully developed flow is steady with constant (high) lift and (low) drag. Each of these cases is considered in two different transient problems, one with angular acceleration of the cylinder and constant speed, and the other one with translating acceleration of the cylinder and constant rotation. We characterize quantitatively the contributions of individual fluid elements (vortices) to aerodynamic forces, explaining and quantifying the mechanisms by which the lift is generated in each case. In particular, for high rotation (when α=3), we explain the relation between the mechanisms of vortex shedding suppression and those by which the lift is enhanced and the drag is almost suppressed when the fully developed flow is reached.  相似文献   

7.
The two-dimensional motion of a cylinder in a viscous fluid between two parallel walls of a vertical channel is studied. It is found that when the cylinder moves very closely along one of the channel walls, it always rotates in the direction opposite to that of contact rolling along the nearest wall. When the cylinder is away from the walls, its rotation depends on the Reynolds number of the flow. In this study two numerical methods were used. One is for the unsteady motion of a sedimenting cylinder initially released from a position close to one of the channel walls, where the Navier-Stokes equations are solved for the fluid and Newton's equations of motion are solved for the rigid cylinder. The other method is for the steady flow in which a cylinder is fixed in a uniform flow field where the channel walls are sliding past the cylinder at the speed of the approaching flow, or equivalently a cylinder is moving with a constant velocity in a quiescent fluid. The flow field, the drag, the side force (lift), and the torque experienced by the cylinder are studied in detail. The effects of the cylinder location in the channel, the size of the channel relative to the cylinder diameter, and the Reynolds number of the flow are examined. In the limit when the cylinder is translating very closely along one of the walls, the flow in the gap between the cylinder and the wall is solved analytically using lubrication theory, and the numerical solution in the other region is used to piece together the whole flow field.This research was supported by NSF DMR91-20668 through the Laboratory for Research on the Structure of Matter at the University of Pennsylvania and from the Research Foundation of the University of Pennsylvania.  相似文献   

8.
This study elucidates the relation between wake vortex shedding and aerodynamic force fluctuations for a low Reynolds number wing from time resolved particle image velocimetry (TR-PIV) experimental measurements. The results reveal a periodic lift and drag variation within the shedding cycle and resolve the frequencies of those fluctuations from a proper orthogonal decomposition (POD) and power spectral density (PSD) analysis. To show the effect of vortex shedding on the body force fluctuations, the evolution of instantaneous aerodynamic forces is compared to the pressure field of the fluid flow and to the vortical structures in the wake of the airfoil. A six step model describing the vortex-force relation is proposed. It shows that changes in lift such as maximum lift and minimum lift are associated with the detachment of a vortex. It also shows that the minimum or local minimum drag value is obtained at the onset formation of a vortex on the airfoil wake. Similarly, the maximum or local maximum drag is obtained at the onset formation of the saddle on the airfoil wake. The model further explains the asymmetry observed in the unsteady drag force evolution. The model can be used to optimize flow control and fluid-structure interaction applications.  相似文献   

9.
The waving wing experiment is a fully three-dimensional simplification of the flapping wing motion observed in nature. The spanwise velocity gradient and wing starting and stopping acceleration that exist on an insect-like flapping wing are generated by rotational motion of a finite span wing. The flow development around a waving wing at Reynolds number between 10,000 and 60,000 has been studied using flow visualization and high-speed PIV to capture the unsteady velocity field. Lift and drag forces have been measured over a range of angles of attack, and the lift curve shape was similar in all cases. A transient high-lift peak approximately 1.5 times the quasi-steady value occurred in the first chord length of travel, caused by the formation of a strong attached leading edge vortex. This vortex appears to develop and shed more quickly at lower Reynolds numbers. The circulation of the leading edge vortex has been measured and agrees well with force data.  相似文献   

10.
本文通过流动显示,热线测频和流体动载荷测量在水槽中研究了绕经不同柱间距比S/D(S为双柱间距,D为柱体截面宽)串列双方柱体流动特性。实验雷诺数为Re=6×10~3,柱间距比0.5≤S/D≤10实验测量了涡脱落频率、时间平均阻力、动态阻力和动态升力。通过实验结果综合分析给出临界柱间距范围2.5≤(S/D)_(cr)≤3.0,并将串列双方柱流动随柱间距的变化划分为二种流态区。在临界柱间距,作用于双柱体的流体载荷、涡脱落频率以及流谱都发生跃变。文中分析讨论了两个流态区的特性以及在临界柱间距出现的双稳态特性。  相似文献   

11.
.Intr0ductionSurfaceerosionofmaterialbysolid-particleimpactisanimportantprobleminmultiphaseflowindustriaIdevicesandthecharacteristicsoftheparticIe'smotioninaturbulentboundarylayerflowisthebaseofthestudyofthematerialsurfaceerosion.Manycalculationmodelshave…  相似文献   

12.
A theoretical study is presented for the two-dimensional creeping flow caused by a long circular cylindrical particle translating and rotating in a viscous fluid near a large plane wall parallel to its axis. The fluid is allowed to slip at the surface of the particle. The Stokes equations for the fluid velocity field are solved in the quasi-steady limit using cylindrical bipolar coordinates. Semi-analytical solutions for the drag force and torque acting on the particle by the fluid are obtained for various values of the slip coefficient associated with the particle surface and of the relative separation distance between the particle and the wall. The results indicate that the translation and rotation of the confined cylinder are not coupled with each other. For the motion of a no-slip cylinder near a plane wall, our hydrodynamic drag force and torque results reduce to the closed-form solutions available in the literature. The boundary-corrected drag force and torque acting on the particle decrease with an increase in the slip coefficient for an otherwise specified condition. The plane wall exerts the greatest drag on the particle when its migration occurs normal to it, and the least in the case of motion parallel to it. The enhancement in the hydrodynamic drag force and torque on a translating and rotating particle caused by a nearby plane wall is much more significant for a cylinder than for a sphere.  相似文献   

13.
Large-eddy simulations (LES) are employed to understand the flow field over a NACA 0015 airfoil controlled by a dielectric barrier discharge (DBD) plasma actuator. The Suzen body force model is utilised to introduce the effect of the DBD plasma actuator. The Reynolds number is fixed at 63,000. Transient processes arising due to non-dimensional excitation frequencies of one and six are discussed. The time required to establish flow authority is between four and six characteristic times, independent of the excitation frequency. If the separation is suppressed, the initial flow conditions do not affect the quasi-steady state, and the lift coefficient of the higher frequency case converges very quickly. The transient states can be categorised into following three stages: (1) the lift and drag decreasing stage, (2) the lift recovery stage, and (3) the lift and drag converging stage. The development of vortices and their influence on control is delineated. The simulations show that in the initial transient state, separation of flow suppression is closely related to the development spanwise vortices while during the later, quasi-steady state, three-dimensional vortices become more important.  相似文献   

14.
An experimental study was conducted to investigate the aerodynamic characteristics of a bio-inspired corrugated airfoil compared with a smooth-surfaced airfoil and a flat plate at the chord Reynolds number of Re C  = 58,000–125,000 to explore the potential applications of such bio-inspired corrugated airfoils for micro air vehicle designs. In addition to measuring the aerodynamic lift and drag forces acting on the tested airfoils, a digital particle image velocimetry system was used to conduct detailed flowfield measurements to quantify the transient behavior of vortex and turbulent flow structures around the airfoils. The measurement result revealed clearly that the corrugated airfoil has better performance over the smooth-surfaced airfoil and the flat plate in providing higher lift and preventing large-scale flow separation and airfoil stall at low Reynolds numbers (Re C  < 100,000). While aerodynamic performance of the smooth-surfaced airfoil and the flat plate would vary considerably with the changing of the chord Reynolds numbers, the aerodynamic performance of the corrugated airfoil was found to be almost insensitive to the Reynolds numbers. The detailed flow field measurements were correlated with the aerodynamic force measurement data to elucidate underlying physics to improve our understanding about how and why the corrugation feature found in dragonfly wings holds aerodynamic advantages for low Reynolds number flight applications.  相似文献   

15.
An analytic solution to the problem of motion of a slender rigid body in a semi-infinite domain of a compressible fluid is obtained for the case when the body moves in parallel to the free surface at a constant velocity. This problem is similar to the problem of motion of a hydrofoil ship whose wing-like device allows it to lift its hull above the water surface and to decrease the friction and drag forces limiting the speed of usual ships. During its motion in water, a hydrofoil produces a lift force. The obtained analytic solution allows one to derive explicit expressions for the drag force and for the lift force in the limiting cases of relatively small and large depths. When depth is small, the drag force is greater than that in an infinite medium, since the wave drag is additionally evolved. When the velocity increases and approaches the sound velocity, the forces exerted on the body increase without limit, which is typical for a linear formulation of the problem.  相似文献   

16.
Using operating principles similar to that applied in atomic force microscopes, we have developed a novel measuring method to study the aerodynamic forces, in particular the lift and drag force, acting on a small particle attached to a wall and immersed in a linear shear flow. Results thus far have shown that the system is capable of measuring both the minute aerodynamic lift and drag forces that a particle experiences as a result of the flow.C. Muthanna has also published under the name C. M. Kolera
C. MuthannaEmail:
  相似文献   

17.
A spectral – spectral-element code is used to investigate the hydrodynamic forces acting on a fixed sphere placed in a uniform flow in the Reynolds number interval [10–320] covering the early stages of transition, i.e. the steady axisymmetric regime with detached flow, the steady non-axisymmetric and the unsteady periodic regimes of the sphere wake. The mentioned changes of regimes, shown by several authors to be related to a regular and a Hopf bifurcations in the wake, result in significant changes of hydrodynamic action of the flow on the sphere. In the present paper, we show that the loss of axisymmetry is accompanied not only by an onset of lift but also of a torque and we give accurate values of drag, lift and torque in the whole interval of investigated Reynolds numbers. Among other results show, moreover, that each bifurcation is accompanied also by a change of the trend of the drag versus Reynolds number dependence, the overall qualitative effect of instabilities being an increase of drag.  相似文献   

18.
The effect of spanwise flexibility on the development of leading-edge vortices for impulsively started flat plates at low Reynolds numbers has been investigated. A theoretical model is proposed, based on the Euler–Bernoulli beam theory, coupled with a vortex growth model based on vorticity flux through a leading-edge shear layer. The model was validated for rigid and flexible flat plates undergoing a towing motion at an angle-of-attack of 45°. It is shown that a phase-delay in lift and drag generation occurs between rigid and flexible cases. The model indicates decreasing vorticity along the span as the wing is accelerated and begins to bend. Particle image velocimetry measurements conducted at three different spanwise planes showed a delay in vortex growth along the span, despite a uniform spanwise circulation. This uniform spanwise distribution of circulation is in contrast to the quasi-two-dimensional model, which predicted a reduced circulation near the profile tip where plate motion was delayed. It is therefore concluded that circulation must be dynamically redistributed through vorticity convection during the impulsive motion.  相似文献   

19.
Vortex shedding and aerodynamic forces on a circular cylinder in a linear shear flow with its axis normal to the plane of the velocity shear profile at subcritical Reynolds number are investigated experimentally. The shear parameter β, which is based on the velocity gradient, cylinder diameter and upstream mean velocity at the center plane of the cylinder, varies from 0 to 0.27. The Strouhal number has no significant variation with the shear parameter. The time-mean base pressure increases and the fluctuating component of the base pressure decreases significantly with increasing shear parameter. Vortex shedding is suppressed by the velocity shear. Dislocation of the stagnation point takes place and this influences the pressure distribution around the cylinder together with the velocity shear. A mean lift force arises in the shear flow due to asymmetry of the pressure distribution, and it acts from the high velocity side to the low velocity side. In addition, the lift coefficient increases and the drag coefficient decreases with increasing shear parameter.  相似文献   

20.
Three-dimensional Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) are performed to investigate the shear effects on flow around a circular cylinder at Reynolds numbers of Re=60–1000. The shear parameter, β, which is based on the velocity gradient, cylinder diameter and upstream mean velocity at the center plane of the cylinder, varies from 0 to 0.30. Variations of Strouhal number, drag and lift coefficients, and unsteady wake structures with shear parameter are studied, along with their dependence on Reynolds number. The presented simulation provides detailed information for the flow field around a circular cylinder in shear flow. This study shows that the Strouhal number exhibits no significant variation with shear parameter. The stagnation point moves to the high-velocity side almost linearly with shear parameter, and this result mainly influences the aerodynamic forces acting on a circular cylinder in shear flow. Both the Reynolds number and shear parameter influence the movement of the stagnation point and separation point. Mode A wake instability is suppressed into parallel vortex shedding mode at a certain shear parameter. The lift force increases with increasing shear parameter and acts from the high-velocity side to the low-velocity side. In addition, a simple method to estimate the lift force coefficient in shear flow is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号