首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phosphinoamide-linked Co/Hf complexes ICo(Ph(2)PN(i)Pr)(3)HfCl (4), ICo((i)Pr(2)PNMes)(3)HfCl (5), and ICo((i)Pr(2)PN(i)Pr)(3)HfCl (6) have been synthesized from the corresponding tris(phosphinoamide)HfCl complexes (1-3) for comparison with the recently reported tris(phosphinoamide) Co/Zr complexes. Very minor structural and electronic differences between the Zr and Hf complexes were found when the N-(i)Pr-substituted phosphinoamide ligands [Ph(2)PN(i)Pr](-) and [(i)Pr(2)PN(i)Pr](-) were utilized. The reduction products [(THF)(4)Na-{N(2)-Co(Ph(2)PN(i)Pr)(3)HfCl}(2)]Na(THF)(6) (7) and N(2)-Co((i)Pr(2)PN(i)Pr)(3)Hf (9) are also remarkably similar to the corresponding Zr/Co analogues. In the case of Hf/Co and Zr/Co complexes linked by the N-Mes ligand [(i)Pr(2)PNMes](-) (Mes = 2,4,6-trimethylphenyl), however, more pronounced differences in structure, bonding, and reactivity are observed. While differences associated with 5 are still modest, larger variations are observed when comparing the two-electron reduction product [N(2)-Co((i)Pr(2)PNMes)(3)Hf-X][Na(THF)(5)] (8) with its Zr congener. In addition to structural and spectroscopic differences, vastly different reactivity is observed, with 8 undergoing one-electron oxidation to form ClHf(MesNP(i)Pr(2))(3)CoN(2) (11) in the presence of MeI, while a two-electron oxidative addition process occurs in a similar reaction with the Zr derivative. The activity of 5 toward Kumada coupling was investigated, finding significantly diminished activity in comparison to Co/Zr complexes.  相似文献   

2.
The heterobimetallic complexes [Mn((i)PrNPPh(2))(3)Cu((i)PrNHPPh(2))] (1) and [Fe((i)PrNPPh(2))(3)Cu((i)PrNHPPh(2))] (2) have been synthesized by the one pot reaction of LiN(i)PrPPh(2), MCl(2) (M = Mn, Fe), and CuI in high yield. Addition of excess CuI into 2 or directly to the reaction mixture led to the formation of a heterotrimetallic [Fe((i)PrNPPh(2))(3)Cu(2)((i)PrNPPh(2))] (3) in good yield. Complexes 1-3 have been characterized by means of elemental analysis, paramagnetic (1)H NMR, UV-vis spectroscopy, cyclic voltammetry, and single crystal X-ray analysis. In all three complexes, Mn or Fe are in the +2 oxidation state and have a high spin electron configuration, as evidenced by solution Evans' method. In addition, the oxidation state of Fe in complex 3 is confirmed by zero-field (57)Fe M?ssbauer spectroscopy. X-ray crystallography reveals that the three coordinate Mn/Fe centers in the zwitterionic complexes 1-3 adopt an unusual trigonal planar geometry.  相似文献   

3.
Trisubstitued N,N',N' '-tri(alkyl)guanidinate anions have been used in the synthesis of a family of Fe(II) and Fe(III) complexes. Complexes FeCl[((i)PrN)(2)C(HN(i)Pr)](2) (1), [Fe[micro-((i)PrN)(2)C(HN(i)Pr)][((i)PrN)(2)C(HN(i)Pr)]](2) (2), and [Fe[mgr;-(CyN)(2)C(HNCy)][(CyN)(2)C(HNCy)]](2) (3) were prepared from the reaction of the appropriate lithium tri(alkyl)guanidinate and FeCl(3) or FeBr(2). The complex [FeBr[micro-(CyN)(2)C(HNCy)]](2) (4), an apparent intermediate in the formation of 3, has also been isolated and characterized. Complexes 1 and 2 react with alkyllithium reagents to yield products that depend on the identity of the reagent as well as the reaction stoichiometry. Reaction of 2 with MeLi (1:2 ratio) produces Li(2)[Fe[micro-((i)PrN)(2)C=N(i)Pr][((i)PrN)(2)C(HN(i)Pr)]](2) (5). Reaction of 1 with an equimolar amount of LiCH(2)SiMe(3) results in reduction to Fe(II) and generation of 2 while reaction with 4 LiCH(2)SiMe(3) proceeds by a combination of reduction, substitution, and deprotonation of guandinate to yield Li(4)(THF)(2)[Fe[((i)PrN)(2)CN(i)Pr](CH(2)SiMe(3))(2)](2) (7). Both complexes 5 and 7 posssess dianionic guanidinate ligands. The reaction of 2 with 1 equiv of LiCH(2)SiMe(3) generated Fe(2)[micro-((i)PrNCN(i)Pr)(2)(N(i)Pr)][((i)PrN)(2)C(HN(i)Pr)](2) (6). Compound 6 has a dianionic biguanidinate ligand derived from the coupling of the two bridging guanidinate ligands of 2.  相似文献   

4.
Addition of three equivalents of phosphinoamine, (ArNHP(i)Pr(2)) [Ar = 3,5-dimethylphenyl] to M(CH(2)SiMe(3))(3)(THF)(2) [M = Sc, Y] precursors gives complexes of the form (ArNP(i)Pr(2))(3)M(THF) [M = Sc, Y]. In the case of scandium, addition of Sc(CH(2)SiMe(3))(3)(THF)(2) to (ArNP(i)Pr(2))(3)Sc(THF) affords (ArNP(i)Pr(2))(2)Sc(CH(2)SiMe(3))(THF), which has been isolated and structurally characterized. In contrast, addition of Y(CH(2)SiMe(3))(3)(THF)(2) to (ArNP(i)Pr(2))(3)Y(THF) generates a distribution of phosphinoamide-containing products consistent with the formulations (ArNP(i)Pr(2))(2)Y(CH(2)SiMe(3))(THF) and (ArNP(i)Pr(2))Y(CH(2)SiMe(3))(2)(THF), as ascertained using NMR spectroscopy. Attempts to react the alkyl-containing phosphinoamide complexes with small molecules such as H(2) led to disproportionation type processes.  相似文献   

5.
Five-coordinated trithiotungsten complexes (PPh(4))[(dmsp)W(S)(3)] (1a) and (PPh(4))[(dpsp)W(S)(3)] (1b) (R(2)PCH(2)CH(2)S(-); R = Me (dmsp-)), Ph (dpsp-))) were synthesized by addition of Hdmsp and Hdpsp to a THF solution of (PPh(4))[(EtS)W(S)(3)]. Treatment of 1a with CuBr in the presence of PPh(3) in CH(3)CN afforded a WCu(2) cluster (dmsp)WS(3)Cu(2)(PPh(3))(2)Br (2). The reaction of 1a with 1 equiv of FeCl(2) went smoothly to generate a 1:1 adduct (PPh(4))[(dmsp)WS(3)(FeCl(2))] (3), while 3 did not react further with excess FeCl(2). On the other hand, 3 was found to react with [Fe(CH(3)CN)(6)](ClO(4))(2), giving rise to an unusual tetranuclear cluster, [(dmsp)WS(3)](2)Fe(2)Cl (4), while the reaction of 1a with 2 equiv of [Fe(CH(3)CN)(6)](ClO(4))(2) led to a cyclic octanuclear cluster [(dmsp)WS(3)Fe](4) (5). Although the oxidation states of W(VI), Cu(I), and Fe(II) are retained in 2 and 3, reduction of the metal ions occurs in the formation of 4 and 5. All the complexes reported in this paper were structurally characterized by X-ray analysis. It is anticipated that the new type of trithiotungsten complexes, 1a and 1b, will serve as potential synthons for various heterometallic sulfide clusters.  相似文献   

6.
Cao Y  Du Z  Li W  Li J  Zhang Y  Xu F  Shen Q 《Inorganic chemistry》2011,50(8):3729-3737
Reaction of Ln(OAr(1))(3)(THF)(2) (Ar(1)= [2,6-((t)Bu)(2)-4-MeC(6)H(2)] with carbodiimides (RNCNR) in toluene afforded the RNCNR coordinated complexes (Ar(1)O)(3)Ln(NCNR) (R = (i)Pr (isopropyl), Ln = Y (1) and Yb (2); R = Cy (cyclohexyl), Ln = Y (3)) in high yields. Treatment of 1 and 2 with 4-chloroaniline, respectively, at a molar ratio of 1:1 yielded the corresponding monoguanidinate complex (Ar(1)O)(2)Y[(4-Cl-C(6)H(4)N)C(NH(i)Pr)N(i)Pr](THF) (4) and (Ar(1)O)(2)Yb[(4-Cl-C(6)H(4)N)C(NH(i)Pr)N(i)Pr](THF) (5). Complexes 4 and 5 can be prepared by the reaction of Ln(OAr(1))(3)(THF)(2) with RNCNR and amine in toluene at a 1:1:1 molar ratio in high yield directly. A remarkable influence of the aryloxide ligand on this transformation was observed. The similar transformation using the less bulky yttrium complexes Y(OAr(2))(3)(THF)(2) (Ar(2) = [2,6-((i)Pr)(2)C(6)H(3)]) or Y(OAr(3))(3)(THF)(2) (Ar(3) = [2,6-Me(2)C(6)H(3)]) did not occur. Complexes Ln(OAr(1))(3)(THF)(2) were found to be the novel precatalysts for addition of RNCNR with amines, which represents the first example of catalytic guanylation by the lanthanide complexes with the Ln-O active group. The catalytic activity of Y(OAr(1))(3)(THF)(2) was found to be the same as that of monoguanidinate complex 4, indicating 4 is one of the active intermediates in the present process. The other intermediate, amide complex (Ar(1)O)(2)Ln[(2-OCH(3)-C(6)H(4)NH)(2-OCH(3)-C(6)H(4)NH(2))] (6), was isolated by protonolysis of 4 with 2-OCH(3)-C(6)H(4)NH(2). All the complexes were structurally characterized by X-ray single crystal determination.  相似文献   

7.
The electronic structures of complexes of iron containing two S,S'-coordinated benzene-1,2-dithiolate, (L)(2)(-), or 3,5-di-tert-butyl-1,2-benzenedithiolate, (L(Bu))(2)(-), ligands have been elucidated in depth by electronic absorption, infrared, X-band EPR, and Mossbauer spectroscopies. It is conclusively shown that, in contrast to earlier reports, high-valent iron(IV) (d(4), S = 1) is not accessible in this chemistry. Instead, the S,S'-coordinated radical monoanions (L(*))(1)(-) and/or (L(Bu)(*))(1)(-) prevail. Thus, five-coordinate [Fe(L)(2)(PMe(3))] has an electronic structure which is best described as [Fe(III)(L)(L(*))(PMe(3))] where the observed triplet ground state of the molecule is attained via intramolecular, strong antiferromagnetic spin coupling between an intermediate spin ferric ion (S(Fe) = (3)/(2)) and a ligand radical (L(*))(1)(-) (S(rad) = (1)/(2)). The following complexes containing only benzene-1,2-dithiolate(2-) ligands have been synthesized, and their electronic structures have been studied in detail: [NH(C(2)H(5))(3)](2)[Fe(II)(L)(2)] (1), [N(n-Bu)(4)](2)[Fe(III)(2)(L)(4)] (2), [N(n-Bu)(4)](2)[Fe(III)(2)(L(Bu))(4)] (3); [P(CH(3))Ph(3)][Fe(III)(L)(2)(t-Bu-py)] (4) where t-Bu-py is 4-tert-butylpyridine. Complexes containing an Fe(III)(L(*))(L)- or Fe(III)(L(Bu))(L(Bu)(*))- moiety are [N(n-Bu)(4)][Fe(III)(2)(L(Bu))(3)(L(Bu)(*))] (3(ox)()), [Fe(III)(L)(L(*))(t-Bu-py)] (4(ox)()), [Fe(III)(L(Bu))(L(Bu)(*))(PMe(3))] (7), [Fe(III)(L(Bu))(L(Bu)(*))(PMe(3))(2)] (8), and [Fe(III)(L(Bu))(L(Bu)(*))(PPr(3))] (9), where Pr represents the n-propyl substituent. Complexes 2, 3(ox)(), 4, [Fe(III)(L)(L(*))(PMe(3))(2)] (6), and 9 have been structurally characterized by X-ray crystallography.  相似文献   

8.
This paper introduces a sterically encumbered, strong-field tris(diisopropylphosphino)borate ligand, [PhBP(iPr)(3)] ([PhBP(iPr)(3)] = [PhB(CH(2)P(i)Pr(2))(3)](-)), to probe aspects of its conformational and electronic characteristics within a host of complexes. To this end, the Tl(I) complex, [PhBP(iPr)(3)]Tl (1), was synthesized and characterized in the solid-state by X-ray diffraction analysis. This precursor proves to be an effective transmetallating agent, as evidenced by its reaction with the divalent halides FeCl(2) and CoX(2) (X = Cl, I) to produce the monomeric, 4-coordinate, high-spin derivatives [PhBP(iPr)(3)]FeCl (2) and [PhBP(iPr)(3)]CoX (X = Cl (3), I (4)) in good yield. Complexes 2-4 were each characterized by X-ray diffraction analysis and shown to be monomeric in the solid-state. For conformational and electronic comparison within a system exhibiting higher than 4-coordination, the 16-electron ruthenium complexes [[PhBP(iPr)(3)]Ru(mu-Cl)](2) (5) and [[PhBP(3)]Ru(mu-Cl)](2) (6) were prepared and characterized ([PhBP(3)] = [PhB(CH(2)PPh(2))(3)](-)). The chloride complexes 2 and 3 reacted with excess CO to afford the divalent, monocarbonyl adducts [PhBP(iPr)(3)]FeCl(CO) (7) and [PhBP(iPr)(3)]CoCl(CO) (8), respectively. Reaction of 4 with excess CO resulted in the monovalent, dicarbonyl product [PhBP(iPr)(3)]Co(I)(CO)(2) (9). Complexes 5 and 6 also bound CO readily, providing the octahedral, 18-electron complexes [PhBP(iPr)(3)]RuCl(CO)(2) (10) and [PhBP(3)]RuCl(CO)(2) (11), respectively. Dimers 5 and 6 were broken up by reaction with trimethylphosphine to produce the mono-PMe(3) adducts [PhBP(iPr)(3)]RuCl(PMe(3)) (12) and [PhBP(3)]RuCl(PMe(3)) (13). Stoichiometric oxidation of 3 with dioxygen provided the 4-electron oxidation product [PhB(CH(2)P(O)(i)Pr(2))(2)(CH(2)P(i)Pr(2))]CoCl (14), while exposure of 3 to excess oxygen results in the 6-electron oxidation product [PhB(CH(2)P(O)(i)Pr(2))(3)]CoCl (15). Complexes 2 and 4 were characterized via cyclic voltammetry to compare their redox behavior to their [PhBP(3)] analogues. Complex 4 was also studied by SQUID magnetization and EPR spectroscopy to confirm its high-spin assignment, providing an interesting contrast to its previously described low-spin relative, [PhBP(3)]CoI. The difference in spin states observed for these two systems reflects the conformational rigidity of the [PhBP(iPr)(3)] ligand by comparison to [PhBP(3)], leaving the former less able to accommodate a JT-distorted electronic ground state.  相似文献   

9.
Addition of 2 equiv of LiNMe(2) to the bis(imino)pyridine ferrous dichloride, ((i)(Pr)PDI)FeCl(2) ((i)(Pr)PDI = (2,6-(i)()Pr(2)-C(6)H(3)N=CMe)(2)C(5)H(3)N), resulted in deprotonation of the chelate methyl groups, yielding the bis(enamide)pyridine iron dimethylamine adduct, ((i)(Pr)PDEA)Fe(NHMe(2)) ((i)(Pr)PDEA = (2,6-(i)Pr(2)-C(6)H(3)NC=CH(2))(2)C(5)H(3)N). Performing a similar procedure with KN(SiMe(3))(2) in THF solution afforded the corresponding bis(THF) adduct, ((i)(Pr)PDEA)Fe(THF)(2). ((i)(Pr)PDEA)Fe(NHMe(2)) has also been prepared by addition of the free amine to the iron dialkyl complex, ((i)(Pr)PDI)Fe(CH(2)SiMe(3))(2), implicating formation of a transient iron amide that is sufficiently basic to deprotonate the bis(imino)pyridine methyl groups. Deprotonation of the amine ligand in ((i)(Pr)PDEA)Fe(NHMe(2)) has been accomplished by addition of amide bases to afford the ferrous amide-ate complexes, [((i)(Pr)PDEA)Fe(mu-NMe(2))M] (M = Li, K).  相似文献   

10.
The reaction between [Rh(mu-OH)(COD)](2) (COD = 1,5-cyclooctadiene) and 73% HF in THF gives [Rh(3)(mu(3)-OH)(2)(COD)(3)](HF(2)) (1). Its crystal structure, determined by ab initio X-ray powder diffraction methods (from conventional laboratory data), contains complex trimetallic cations linked together in 1D chains by a mu(3)-OH...F-H-F...HO-mu(3) sequence of strong hydrogen bonds. The complex [Rh(mu-F)(COE)(2)](2) (COE = cyclooctene; 2), prepared by reacting [Rh(mu-OH)(COE)(2)](2) with NEt(3).3HF (3:2), has been characterized. Complex 1 reacts with PR(3) (1:3) to give [RhF(COD)(PR(3))] [R = Ph (3), C(6)H(4)OMe-4 (4), (i)Pr (5), Cy (6)] that can be prepared directly by reacting [Rh(mu-OH)(COD)](2) with 73% HF and PR(3) (1:2:2). The reactions of 1 with PPh(3) or Et(3)P have been studied by NMR spectroscopy at different molar ratios. Complexes [RhF(PEt(3))(3)] (7), [RhF(COD)(PEt(3))] (8), and [RhF(PPh(3))(3)] (9) have been detected. The complex [Rh(F)(NBD)(iPr(3)P)] (NBD = norbornadiene; 10) was prepared by the sequential treatment of [Rh(mu-OMe)(NBD)](2) with 1 equiv of NEt(3).3HF and (i)Pr(3)P. The first isolated bifluoride rhodium(I) complexes [Rh(FHF)(COD)(PR(3))] [R = Ph (11), (i)Pr (12), Cy (13)], obtained by reacting fluoro complexes 3, 5, and 6 with NEt(3).3HF (3:1), have been characterized. The crystal structures of 3 and 11 have been determined.  相似文献   

11.
Tetrahedral FeCl[N(SiMe(3))(2)](2)(THF) (2), prepared from FeCl(3) and 2 equiv of Na[N(SiMe(3))(2)] in THF, is a useful ferric starting material for the synthesis of weak-field iron-imide (Fe-NR) clusters. Protonolysis of 2 with aniline yields azobenzene and [Fe(2)(mu-Cl)(3)(THF)(6)](2)[Fe(3)(mu-NPh)(4)Cl(4)] (3), a salt composed of two diferrous monocations and a trinuclear dianion with a formal 2 Fe(III)/1 Fe(IV) oxidation state. Treatment of 2 with LiCl, which gives the adduct [FeCl(2)(N(SiMe(3))(2))(2)](-) (isolated as the [Li(TMEDA)(2)](+) salt), suppresses arylamine oxidation/iron reduction chemistry during protonolysis. Thus, under appropriate conditions, the reaction of 1:1 2/LiCl with arylamine provides a practical route to the following Fe-NR clusters: [Li(2)(THF)(7)][Fe(3)(mu-NPh)(4)Cl(4)] (5a), which contains the same Fe-NR cluster found in 3; [Li(THF)(4)](2)[Fe(3)(mu-N-p-Tol)(4)Cl(4)] (5b); [Li(DME)(3)](2)[Fe(2)(mu-NPh)(2)Cl(4)] (6a); [Li(2)(THF)(7)][Fe(2)(mu-NMes)(2)Cl(4)] (6c). [Li(DME)(3)](2)[Fe(4)(mu(3)-NPh)(4)Cl(4)] (7), a trace product in the synthesis of 5a and 6a, forms readily as the sole Fe-NR complex upon reduction of these lower nuclearity clusters. Products were characterized by X-ray crystallographic analysis, by electronic absorption, (1)H NMR, and M?ssbauer spectroscopies, and by cyclic voltammetry. The structures of the Fe-NR complexes derive from tetrahedral iron centers, edge-fused by imide bridges into linear arrays (5a,b; 6a,c) or the condensed heterocubane geometry (7), and are homologous to fundamental iron-sulfur (Fe-S) cluster motifs. The analogy to Fe-S chemistry also encompasses parallels between Fe-mediated redox transformations of nitrogen and sulfur ligands and reductive core conversions of linear dinuclear and trinuclear clusters to heterocubane species and is reinforced by other recent examples of iron- and cobalt-imide cluster chemistry. The correspondence of nitrogen and sulfur chemistry at iron is intriguing in the context of speculative Fe-mediated mechanisms for biological nitrogen fixation.  相似文献   

12.
Reactions of Fe[N(SiMe(3))(2)](2) with 1 and 2 equiv of Ph(3)SiSH in hexane afforded dinuclear silanethiolato complexes, [Fe(N(SiMe(3))(2))(mu-SSiPh(3))](2) (1) and [Fe(SSiPh(3))(mu-SSiPh(3))](2) (2), respectively. Various Lewis bases were readily added to 2, generating mononuclear adducts, Fe(SSiPh(3))(2)(L)(2) [L = CH(3)CN (3a), 4-(t)BuC(5)H(4)N (3b), PEt(3) (3c), (LL) = tmeda (3d)]. From the analogous reactions of M[N(SiMe(3))(2)](2) (M = Mn, Co) and [Ni(NPh(2))(2)](2) with Ph(3)SiSH in the presence of TMEDA, the corresponding silanethiolato complexes, M(SSiPh(3))(2)(tmeda) [M = Mn (4), Co (5), Ni (6)], were isolated. Treatment of 3a with (PPh(4))(2)[MoS(4)] or (NEt(4))(2)[FeCl(4)] resulted in formation of a linear trinuclear Fe-Mo-Fe cluster (PPh(4))(2)[MoS(4)(Fe(SSiPh(3))(2))(2)] (7) or a dinuclear complex (NEt(4))(2)[Fe(2)(SSiPh(3))(2)Cl(4)] (8). On the other hand, the reaction of 3a with [Cu(CH(3)CN)(4)](PF(6)) gave a cyclic tetranuclear copper cluster Cu(4)(SSiPh(3))(4) (9), where silanethiolato ligands were transferred from iron to copper. Silicon-sulfur bond cleavage was found to occur when the cobalt complex 5 was treated with (NBu(4))F in THF, and a cobalt-sulfido cluster Co(6)(mu(3)-S)(8)(PPh(3))(6) (10) was isolated upon addition of PPh(3) to the reaction system. The silanethiolato complexes reported here are expected to serve as convenient precursors for sulfido cluster synthesis.  相似文献   

13.
Reaction of the triamido stannate MeSi[SiMe(2)N[(R)-CHMePh]](3)SnLi (1) with 0.5 molar equivalent of [RhCl(olefin)(2)](2) (olefin = COE, C(2)H(4)) or [RhCl(P(i)Pr(3))(2)](2) yielded the Rh-Sn complexes [MeSi[SiMe(2)N[(R)-CHMePh]](2)[SiMe(2)N[(R)-CHMe(eta(6)-C(6)H(5))]SnRh(L)] (L = COE: 2a, C(2)H(4): 2b, P(i)Pr(3) 3); their intramolecular eta(6)-coordination, along with the tin-rhodium bond, represents the first "ansa" pi-arene/stannate system.  相似文献   

14.
The compounds [K(Q)][IrH(4)(PR(3))(2)] (Q = 18-crown-6, R = Ph, (i)Pr, Cy; Q = aza-18-crown-6, R = (i)Pr; Q = 1,10-diaza-18-crown-6, R = Ph, (i)Pr, Cy; Q = cryptand-222, R = (i)Pr, Cy) were formed in the reactions of IrH(5)(PR(3))(2) with KH and Q. In solution, the stereochemistry of the salts of [IrH(4)(PR(3))(2)](-) is surprisingly sensitive to the countercation: either trans as the potassium cryptand-222 salts (R = Cy, (i)Pr) or exclusively cis (R = Cy, Ph) as the crown- and azacrown-potassium salts or a mixture of cis and trans (R = (i)Pr). There is IR evidence for protonic-hydridic bonding between the NH of the aza salts and the iridium hydride in solution. In single crystals of [K(18-crown-6)][cis-IrH(4)(PR(3))(2)] (R = Ph, (i)Pr) and [K(aza-18-crown-6)][cis-IrH(4)(P(i)Pr(3))(2)], the potassium bonds to three hydrides on a face of the iridium octahedron according to X-ray diffraction studies. Significantly, [K(1,10-diaza-18-crown-6)][trans-IrH(4)(P(i)Pr(3))(2)] crystallizes in a chain structure held together by protonic-hydridic bonds. In [K(1,10-diaza-18-crown-6)][cis-IrH(4)(PPh(3))(2)], the potassium bonds to two hydrides so that one NH can form an intra-ion-pair protonic-hydridic hydrogen bond while the other forms an inter-ion-pair NH.HIr hydrogen bond to form chains through the lattice. Thus, there is a competition between the potassium and NH groups in forming bonds with the hydrides on iridium. The more basic P(i)R(3) complex has the lower N-H stretch in the IR spectrum because of stronger N[bond]H...HIr hydrogen bonding. The trans complexes have very low Ir-H wavenumbers (1670-1680) due to the trans hydride ligands. The [K(cryptand)](+) salt of [trans-IrH(4)(P(i)Pr(3))(2)](-) reacts with WH(6)(PMe(2)Ph)(3) (pK(alpha)(THF) 42) to give an equilibrium (K(eq) = 1.6) with IrH(5)(P(i)Pr(3))(2) and [WH(5)(PMe(2)Ph)(3)](-) while the same reaction of WH(6)(PMe(2)Ph)(3) with the [K(18-crown-6)](+) salt of [cis-IrH(4)(P(i)Pr(3))(2)](-) has a much larger equilibrium constant (K(eq) = 150) to give IrH(5)(P(i)Pr(3))(2) and [WH(5)(PMe(2)Ph)(3)](-); therefore, the tetrahydride anion displays an unprecedented increase (about 100-fold) in basicity with a change from [K(crypt)](+) to [K(crown)](+) countercation and a change from trans to cis stereochemistry. The acidity of the pentahydrides decrease in THF as IrH(5)(P(i)Pr(3))(2)/[K(crypt)][trans-IrH(4)(P(i)Pr(3))(2)] (pK(alpha)(THF) = 42) > IrH(5)(PCy(3))(2)/[K(crypt)][trans-IrH(4)(PCy(3))(2)] (pK(alpha)(THF) = 43) > IrH(5)(P(i)Pr(3))(2)/[K(crown)][cis-IrH(4)(P(i)Pr(3))(2)] (pK(alpha)(THF) = 44) > IrH(5)(PCy(3))(2)/[K(crown)][cis-IrH(4)(PCy(3))(2)]. The loss of PCy(3) from IrH(5)(PCy(3))(2) can result in mixed ligand complexes and H/D exchange with deuterated solvents. Reductive cleavage of P-Ph bonds is observed in some preparations of the PPh(3) complexes.  相似文献   

15.
At room temperature, the early/late heterobimetallic complex Co((i)Pr(2)PNMes)(3)Zr(THF) has been shown to oxidatively add CO(2), generating (OC)Co((i)Pr(2)PNMes)(2)(μ-O)Zr((i)Pr(2)PNMes). This compound can be further reduced under varying conditions to generate either the Zr oxoanion (THF)(3)Na-O-Zr(MesNP(i)Pr(2))(3)Co(CO) or the Zr carbonate complex (THF)(4)Na(2)(CO(3))-Zr(MesNP(i)Pr(2))(3)Co(CO). Additionally, reactivity of the CO(2)-derived product has been observed with PhSiH(3) to generate the Co-hydride/Zr-siloxide product (OC)(H)Co((i)Pr(2)PNMes)(3)ZrOSiH(2)Ph.  相似文献   

16.
The treatment of Fe(ClO(4))(2)·6H(2)O or Fe(ClO(4))(3)·9H(2)O with a benzimidazolyl-rich ligand, N,N,N',N'-tetrakis[(1-methyl-2-benzimidazolyl)methyl]-1,2-ethanediamine (medtb) in alcohol/MeCN gives a mononuclear ferrous complex, [Fe(II)(medtb)](ClO(4))(2)·?CH(3)CN·?CH(3)OH (1), and four non-heme alkoxide-iron(III) complexes, [Fe(III)(OMe)(medtb)](ClO(4))(2)·H(2)O (2, alcohol = MeOH), [Fe(III)(OEt)(Hmedtb)](ClO(4))(3)·CH(3)CN (3, alcohol = EtOH), [Fe(III)(O(n)Pr)(Hmedtb)](ClO(4))(3)·(n)PrOH·2CH(3)CN (4, alcohol = n-PrOH), and [Fe(III)(O(n)Bu)(Hmedtb)](ClO(4))(3)·3CH(3)CN·H(2)O (5, alcohol = n-BuOH), respectively. The alkoxide-iron(III) complexes all show 1) a Fe(III)-OR center (R = Me, 2; Et, 3; (n)Pr, 4; (n)Bu, 5) with the Fe-O bond distances in the range of 1.781-1.816 ?, and 2) a yellow color and an intense electronic transition around 370 nm. The alkoxide-iron(III) complexes can be reduced by organic compounds with a cis,cis-1,4-diene moiety via the hydrogen atom abstraction reaction.  相似文献   

17.
In the pursuit of a "rotated" structure, and exploration of the influence of the aza nitrogen lone pair, the Fe(I)Fe(I) model complexes wherein two Fe(CO)(3-x)P(x) moieties are significantly twisted from the ideal configuration (torsion angle >30°) are reported. [Fe(2)(μ-S(CH(2))(2)N(i)Pr(X)(CH(2))(2)S)(CO)(4)(κ(2)-dppe)](2)(2+) (X = H, 4; Me, 5) prepared from protonation and methylation, respectively, of [Fe(2)(μ-S(CH(2))(2)N(i)Pr(CH(2))(2)S)(CO)(4)(κ(2)-dppe)](2), 1, possess Φ angles of 34.1 and 35.4° (av.), respectively. Such dramatic twist is attributed to asymmetric substitution within the Fe(2) unit in which a dppe ligand is coordinated to one Fe site in the κ(2)-mode. In the presence of the N···C(CO(ap)) interaction, the torsion angle is decreased to 10.8°, suggesting availability of lone pairs of the aza nitrogen sites within 1 is in control of the twist. Backbones of the bridging diphosphine ligands also affect distortion. For a shorter ligand, the more compact structure of [Fe(2)(μ-S(CH(2))(2)N(i)Pr(CH(2))(2)S)(μ-dppm)(CO)(4)](2), 7, is formed. Dppm in a bridging manner allows achievement of the nearly eclipsed configuration. In contrast, dppe in [Fe(2)(μ-S(CH(2))(2)N(i)Pr(CH(2))(2)S)(μ-dppe)(CO)(4)](2), 6, could twist the Fe(CO)(3-x)L(x) fragment to adopt the least strained structure. In addition, the NC(CO(ap)) interaction would direct the twist towards a specific direction for the closer contact. In return, the shorter N···C(CO(ap)) distance of 3.721(7) ? and larger Φ angle of 26.5° are obtained in 6. For comparison, 3.987(7) ? and 3.9° of the corresponding parameters are observed in 7. Conversion of (μ-dppe)[Fe(2)(μ-S(CH(2))(2)N(i)Pr(CH(2))(2)S)(CO)(5)](2), 2, to complex 1 via an associative mechanism is studied.  相似文献   

18.
'Selective' protonolysis of the beta-diketiminato calcium derivative [Ca[(NDippCMe)(2)CH][N(SiMe(3))(2)](THF)] Dipp = C(6)H(3)(i)Pr(2)-2,6) with H(2)N(CH(2))(2)OCH(3) produced the dimeric species [Ca[(NDippCMe)(2)CH][mu-NH(CH(2))(2)OMe]](2), which has been fully characterised in solution and in the solid state.  相似文献   

19.
A density functional theoretical (DFT) study (B3LYP) has been carried out on 20 organometallic complexes containing η(5)- and/or η(3)-coordinated cyclopentadienyl anions (Cp(-)) and 2,2'-bipyridine (bpy) ligand(s) at varying oxidation levels, i.e., as the neutral ligand (bpy(0)), as the π-radical monoanion (bpy(?-))(-), or as the diamagnetic dianion (bpy(2-))(2-). The molecular and electronic structures of these species in their ground states and, in some cases, their first excited states have been calculated using broken-symmetry methodology. The results are compared with experimental structural and spectroscopic data (where available) in order to validate the DFT computational approach. The following electron-transfer series and complexes have been studied: [(Cp)(2)V(bpy)](0,+,2+) (1-3), [(Cp)(2)Ti(bpy)](-,0,+,2+) (4-7), [(Cp)(2)Ti(biquinoline)](0,+) (8 and 9), [(Cp*)(2)Ti(bpy)](0) (10) (Cp* = pentamethylcyclopentadienyl anion), [Cp*Co(bpy)](0,+) (11 and 12), [Cp*Co(bpy)Cl](+,0) (13 and 14), [Fe(toluene)(bpy)](0) (15), [Cp*Ru(bpy)](-) (16), [(Cp)(2)Zr(bpy)](0) (17), and [Mn(CO)(3)(bpy)](-) (18). In order to test the predictive power of our computations, we have also calculated the molecular and electronic structures of two complexes, A and B, namely, the diamagnetic dimer [Cp*Sc(bpy)(μ-Cl)](2) (A) and the paramagnetic (at 25 °C) mononuclear species [(η(5)-C(5)H(4)(CH(2))(2)N(CH(3))(2))Sc((m)bpy)(2)] (B). The crystallographically observed intramolecular π-π interaction of two N,N'-coordinated π-radical anions in A leading to an S = 0 ground state is reliably reproduced. Similarly, the small singlet-triplet gap of ~600 cm(-1) between two antiferromagnetically coupled (bpy(?-))(-) ligands in B, two ferromagnetically coupled radical anions in the triplet excited state of B, and the structures of A and B is reproduced. Therefore, we are confident that we can present computationally obtained, detailed electronic structures for complexes 1-18. We show that N,N'-coordinated neutral bpy(0) ligands behave as very weak π acceptors (if at all), whereas the (bpy(2-))(2-) dianions are strong π-donor ligands.  相似文献   

20.
The synthesis of a penta(1-methylpyrazole)ferrocenyl phosphine oxide ligand (1) [Fe(C(5)(C(3)H(2)N(2)CH(3))(5))(C(5)H(4)PO(t-C(4)H(9))(2))] is reported together with its X-ray crystal structure. Its self-assembly behavior with a dirhodium(II) tetraoctanoate linker (2) [Rh(2)(O(2)CC(7)H(15))(4)] was investigated for construction of fullerene-like assemblies of composition [(ligand)(12)(linker)(30)]. Reaction between 1 and 2 in acetonitrile resulted in the formation of a light purple precipitate (3). Evidence for the ligand-to-linker ratio of 1:2.5 expected for a fullerene-like structure [Fe(C(5)(C(3)H(2)N(2)CH(3))(5))(C(5)H(4)PO(t-C(4)H(9))(2))](12)[Rh(2)(O(2)CC(7)H(15))(4)](30) was obtained from (1)H NMR and elemental analysis. IR and Raman studies confirmed the diaxially bound coordination environment of the dirhodium linker by comparing the stretching frequencies of the carboxylate group and the rhodium-rhodium bond with those in model compound (5), [Rh(2)(O(2)CC(7)H(15))(4)](C(3)H(3)N(2)CH(3))(2), the bis-adduct of linker 2 with 1-methylpyrazole. X-ray powder diffraction and molecular modeling studies provide additional support for the formation of a spherical molecule topologically identical to fullerene with a diameter of approximately 38 ? and a molecular formula of [(1)(12)(2)(30)]. Dissolution of 3 in tetrahydrofuran (THF) followed by layering with acetonitrile afforded purple crystals of [(1)(2)(2)](∞) (6) [Fe(C(5)(C(3)H(2)N(2)CH(3))(5))(C(5)H(4)PO(t-C(4)H(9))(2))][Rh(2)(O(2)CC(7)H(15))(4)](2) with a two-dimensional polymeric structure determined by X-ray crystallography. The dirhodium linkers link ferrocenyl units by coordination to the pyrazoles but only four of the five pyrazole moieties of the pentapyrazole ligand are coordinated. The ligand-to-linker ratio of 1:2 in 6 was confirmed by (1)H NMR spectroscopy and elemental analysis, while results from IR and Raman are in agreement with the diaxially coordinated environment of the linker observed in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号