首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of microheterogeneous sequential semi-interpenetrating polymer networks based on network polyurethanes with different molecular masses of chain segments between crosslinks and a linear polystyrene has been studied by DSC and small-angle X-ray scattering. It has been shown that variation in the molecular mass of polymer segments between polyurethane network junctions affects the formation of the linear component of semi-interpenetrating polymer networks. As a result, the material structure may change in a wide range from a nearly single-phase system to a two-phase one. SAXS measurements indicate that there is a cymbate dependence between the degree of segregation of components of sequential semi-interpenetrating polymer networks and their microheterogeneous structure on the internetwork space. Two hierarchical heterogeneity levels are found to exist in polymer networks, and the features of each of these levels are analyzed.  相似文献   

2.
Phase separation that occurs during formation of semi-interpenetrating polymer networks of various compositions based on crosslinked poly(urethane) and linear poly(methyl methacrylate) containing 1 wt % iron, copper, and chromium chelates has been studied by the methods of DSC and DMA. It has been shown that, in contrast to chromium chelates, the incorporation of iron and copper β-diketonates into the semi-interpenetrating polymer networks (PU : PMMA = 50 : 50) causes retardation of phase separation owing to high rates of poly(urethane) and poly(methyl methacrylate) formation and the appearance of chelate complexes with both blend components at the interface. A more complete phase separation in metal-containing semi-interpenetrating polymer networks (PU : PMMA = 70 : 30) is associated with the fact that chemical kinetics and complexation processes act in opposite directions. The latter processes prevail, and the influence of the type of metal ion in a chelate that predominantly interacts with PU in the blend is diminished.  相似文献   

3.
Summary: Peculiarities of formation kinetics of sequential semi-interpenetrating polymer networks (semi-IPNs) based on crosslinked polyurethane (PU) with different cross-linking density and linear polystyrene (PS), polybutylmethacrylate (PBMA) and polymethacrylate acid (PMAA) have been studied. The experimental data show the dependence of the kinetic parameters of polymerization on Mc, this dependence being different for various monomers. Sharp discrepancy in molecular mass distribution of polymers formed in various matrices has been observed. The differences in dependencies of reaction kinetics and molecular mass distribution are supposed to be connected to various dependence of the chain growth and termination of various monomers on the density of network, i.e. on the confinements imposed by the intranetwork space.  相似文献   

4.
ABSTRACT

An attempt was made to enhance the water-sorption capacity of polymers of 2-hydroxyethyl methacrylate (HEMA) by preparing its semi-interpenetrating polymer network (IPN) with a hydrophilic polymer such as poly(ethylene glycol) (PEG). The effects of various factors, such as history of the polymer sample, chemical architecture of the IPN, presence of salt ions in the swelling medium, and temperature of the swelling medium, were investigated on the water sorption kinetics of the IPNs. The IPN was characterized by IR spectral analysis and various structural parameters, such as molecular weight between crosslinks (Mc), crosslink density (q) and number of elastically effective chains (Ve), were evaluated. The IPNs were also assessed for their antithrombogenic potential.  相似文献   

5.
A generalized theory for the glass transition temperature of crosslinked and uncrosslinked polymers has been developed, which takes into account the influences of end groups, branching, and crosslinking, and their functionality distribution. DiBenedetto's theory was found to correctly characterize the influence of crosslinks on the glass temperature. Normalized to constant crosslink functionality, the crosslink constant is a universal parameter suggesting that the entropic theory of glasses is applicable to crosslinked systems. Data on linear polymers and networks from the crosslinking of polymer chains, vinyl/divinyl-copolymers and step-growth polymers, such as polyurethanes, amine-cured epoxies, or inorganic glasses, are presented.  相似文献   

6.
Several partially interpenetrating polymeric networks (IPN) were made by combining chemically different linear elastomers. The polymer combinations were deposited as films from aqueous emulsions made by mixing the individual emulsions in equal proportions. The films were crosslinked to form two superimposed networks. In two cases, the networks were cleanly separated by hydrolysis of one of the component networks to demonstrate that there was no chemical interaction between the polymers. Measurement of crosslink density showed that, in most cases, partial interpenetration does occur as evidenced by an effective crosslink density of the IPN's greater than the arithmetic mean of the crosslink densities of the component networks. The swelling ratios, densities, and stress–strain properties were determined. For one of the network combinations, a poly(urethane–urea) and a poly(butadiene–acrylonitrile), a series of IPN's varying in polymer composition was made. The swelling ratios and densities are close to the arithmetic means; however, both the tensile strength and crosslink density exhibit a maximum at about 70% poly(butadiene-acrylonitrile). The maximum tensile strength is actually significantly higher than that of either of the component polymers. The elongations all approach that of the poly(urethane–urea), the more extensible material, except for compositions approaching 100% poly(butadiene–acrylonitrile), which exhibit a very low extensibility.  相似文献   

7.
Complexation of iron, copper, and chromium β-diketonates with poly(urethane) and poly(methyl methacrylate) in semi-interpenetrating polymer networks was studied by IR spectroscopy and ESR using various paramagnetic probes. It was shown that types of complexes arising in semi-interpenetrating polymer networks depend on the central metal ion in a chelate. In the networks containing iron and copper β-diketonates, formation of complexes between chelates of these metals and donor groups of PUR and PMMA promotes mutual penetration of poly(urethane) and poly(methyl methacrylate) phases. As a consequence, the degree of their separation decreases and the interphase region widens.  相似文献   

8.
The results obtained using a molecular beam direct sampling mass spectrometer system to determine the thermolysis products and investigate the decomposition kinetics of two model linear polyurethanes are reported. The polyurethanes are shown to degrade in this system strictly to the polycondensation reactants. These results conflict with previous research which indicated that the model polymers degraded by different mechanisms and yielded different degradation products. Kinetic analysis of results obtained from rapid thermolysis of the polymer in the ion source chamber of the pyrolysis mass spectrometer using the activation energy and frequency factor parameters deduced from thermogravimetric analysis of the same polymers reproduced the experimental data on decomposition as a function of time and temperature quite satisfactorily.  相似文献   

9.
Current network theory exhibits inconsistencies which show up particularly clearly in deformation of networks prepared by crosslinking a polymer in solution. A check of theory can be obtained if one knows precisely the number of crosslinks in the network and if a range of deformations is applied to the network. In an effort to explore this problem we have examined the relation of shear modulus to crosslink density, primary molecular weight, and polymer concentration for a series of poly(vinyl alcohol) gels at low to intermediate concentrations. Aqueous poly(vinyl alcohol) solutions were crosslinked to form infinite networks using terephthalaldehyde. We find a large discrepancy with these poly(vinyl alcohol) gels between measured shear modulus and that calculated from classical elasticity theory assuming quantitative reaction of crosslinking. The ratio of measured to calculated modulus is independent of crosslink density for a given primary molecular weight and concentration. It shows linear dependence on polymer concentration prior to crosslinking and extrapolates to a critical concentration which is consistent with the effective sizes of the polymer molecules.  相似文献   

10.
Two-component topologically interpenetrating polymer networks (IPN) of the SIN type (simultaneous interpenetrating networks) composed of a melamine-cured polyacrylate and five different polyether-based polyurethanes were made. The linear polymers and prepolymers were combined in solution, together with the necessary crosslinking agents and catalysts; films were cast, chain-extended, and crosslinked in situ. Infrared spectroscopy indicated that little or no reaction between the different networks occurred. In all cases, except for one IPN which was made from a very highly crosslinked polyurethane, maxima in tensile strength, significantly higher than the tensile strengths of the components, occurred. This was explained by an increase in crosslink density resulting from interpenetration. Some enhancement in other physical properties (impact strength and thermal resistance) was also noted.  相似文献   

11.
Phase separation that takes place during the formation of semi-interpenetrating polymer networks based on crosslinked polyurethane and linear polystyrene was studied by small-angle X-ray scattering and light scattering. The kinetics of the chemical reactions was followed by Fourier transform infrared spectroscopy. The occurrence of broad peaks in the X-ray scattering curves was interpreted in terms of distances between the urethane crosslinks. Small modulations on these curves were assigned to sphere-like structures with a diameter of around 5 nm which might be related to the urethane crosslink regions. Small modulations on the light-scattering curves at the beginning of styrene polymerization were assigned to spheres with diameters of around 4.5 μm, which can be related to the polystyrene-rich phase. These modulations disappear with time, which might indicate an increasing polydispersity of the domain sizes. The final morphology was found to depend on the time at which polymerization of styrene is initiated with respect to the time of gelation of polyurethane.  相似文献   

12.
The interfacial behavior of aqueous solutions of four different neutral polymers in the presence of sodium dodecyl sulfate (SDS) has been investigated by surface tension measurements and ellipsometry. The polymers comprised linear poly(ethylene oxide) with low and high molecular masses (10(3) and 10(6) Dalton (Da), respectively), and two high molecular mass methacrylate-based comb polymers containing poly(ethylene oxide) side chains. The adsorption isotherms of SDS, determined by Gibbs analysis of surface tension data, are nearly the same in the presence of the high molecular mass linear polymer and the comb polymers. Analysis of the ellipsometric data reveals that while a single surface layer model is appropriate for films of polymer alone, a more sophisticated interfacial layer model is necessary for films of SDS alone. For the polymer/surfactant mixtures, a novel semiempirical approach is proposed to determine the surface excess of polymer, and hence quantify the interfacial composition, through analysis of data from the two techniques. The replacement of the polymer due to surfactant adsorption is much less pronounced for the high molecular mass linear polymer and for the comb polymers than for the low molecular mass linear polymer. This finding is rationalized by the significantly higher adsorption driving force of the larger polymer molecules as well as by their more amphiphilic structure in the case of the comb polymers.  相似文献   

13.
For semi-interpenetrating polymer networks (semi-IPNs) based on an incompatible polyurethane network/linear polymethylmethacrylate pair formed in situ in the presence of 3d metal chelates, we have studied the effect of the system composition on the kinetics of formation of the components and the nature of complex formation between the metal compound and the polymer matrix. The ratio of the system components has been shown to have an effect on the selection of the macroligand in formation of complexes of the metal chelate with the polar groups of the semi-IPN, where the general character of the kinetic behavior for the formation of the network and the linear polymer is preserved. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 42, No. 6, pp. 351–356, November–December, 2006.  相似文献   

14.
A series of miscible cellulose ester/poly (vinyl phenol) (CE/PVP) blends containing a latent formaldehyde source were prepared. Due to the low molecular weight of the PVP, the maximum PVP content ID the films was 50 wt %. The blends were then thermally cross-linked ID an attempt to create semi-interpenetrating polymer networks (semi-IPN). The blends were characterized with differential scanning calorimetry, swelling experiments, pyrolysis molecular beam mass spectrometry (py-MBMS), and Fourier transform infrared (FTIR) spectroscopy. The results from the swelling experiments, py-MBMS and FTIR showed that the PVP component did react with the formation of methylene bridges. Blends that contained 50% PVP and high levels of formaldehyde formed semi-IPN structures.  相似文献   

15.
Interactions between linear and network polymers are studied in the case when one component is a polyacid and the other component is an uncharged polymer. It is shown that, under different reaction conditions, swelling or contraction of the polymer network can be observed for the same pair of reagents. It is found that, during consideration of the formation of an interpolymer complex between network and linear polymers, a distinction should be made between a semi-interpenetrating network and a hydrogel with a modified surface. The latter forms under conditions when the linear polymer practically does not penetrate the network and the complexation occurs predominantly on the sample surface.  相似文献   

16.
Hyperbranched polyurethanes, with varying oligoethyleneoxy spacer segments between the branching points, have been synthesized by a one-pot approach starting from the appropriately designed carbonyl azide that incorporates the different spacer segments. The structures of monomers and polymers were confirmed by IR and 1H-NMR spectroscopy. The solution viscosity of the polymers suggested that they were of reasonably high molecular weight. Reversal of terminal functional groups was achieved by preparing the appropriate monohydroxy dicarbonyl azide monomer. The large number of terminal isocyanate groups at the chain ends of such hyperbranched macromolecules caused them to crosslink prior to its isolation. However, carrying out the polymerization in the presence of 1 equiv of a capping agent, such as an alcohol, resulted in soluble polymers with carbamate chain ends. Using a biphenyl-containing alcohol as a capping agent, we have also prepared novel hyperbranched polyurethanes with pendant mesogenic segments. These mesogen-containing polyurethanes, however, did not exhibit liquid crystallinity probably due to the wholly aromatic rigid polymer backbone. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
Summary A series of semi-interpenetrating polymer networks (semi-IPN) of polyurethane (PU) and poly(vinyl chloride) (PVC) has been obtained by prepolymer method and characterised by FTIR; morphological features were examined by SEM-EDS. It has been found that PVC spherical aggregates are dispersed in the PU matrix, but Cl atoms location indicates partial miscibility of both polymers at the interphase which is probably due to hydrogen bonding and/or dipole-dipole interactions. The PVC component influences the phase behaviour of PUs hard segments, as evidenced by DSC results. Thermogravimetric analysis (TG) reveals a complex, multi-step decomposition process with the main mass loss at 503-693 K, while the DTG maxima are located between 540 and 602 K.  相似文献   

18.
The viscoelastic properties of sequential semi-interpenetrating polymer networks prepared via the swelling of network polyurethane in different monomers (butyl methacrylate, styrene) followed by their polymerization in the polyurethane matrix have been studied by means of dynamic mechanical analysis. It is found that the relaxation behavior of the test systems and the degree of segregation of the components depends on M c of the polyurethane matrix because of a change in the molecular mass of the polymer block. The compatibility of the components in sequential semi-interpenetrating polymer networks substantially increases when the network inner space in the polyurethane matrix decreases.  相似文献   

19.
Crosslinked poly(ethylene oxide)-(PEO-N) is used as a novel medium for the anionic polymerization of methyl methacrylate (MMA) initiated by t-BuOK and ethyl-α-lithioisobutyrate (α-LiEtIB) in toluene. Comparative studies with linear poly(ethylene oxide)-(PEO-L) are performed as well. It is found that PEO-N effectively binds both initiators, and the polymerization process takes place mainly in the gel phase. PEO-N accelerates the polymerization process initiated by t-BuOK enabling the formation of high-molecular-weight polymers with high yields. Part of poly(methyl methacrylate)-(PMMA) remains in the gel particles yielding semi-interpenetrating networks with amphiphilic properties. PEO additives do not influence profoundly the course of the polymerization, initiated by α-LiEtIB. The influence of PEO-N on the proceeding of the polymerization is discussed in some detail.  相似文献   

20.
The formation of supramolecular inclusion compounds (pseudopolyrotaxanes) produced by cyclodextrins and polymers can be monitored through turbidimetry. In this paper, we studied the kinetics of the threading of linear poly(ethylene glycol) chains of different molecular weights and of a four-arm star-like polymer as a function of temperature. The main thermodynamic parameters are extracted. The aggregation and precipitation of pseudopolyrotaxanes are described in terms of the Avrami-Erofe'ev model, which provides relevant information on the mechanism of these processes. SAXS and TGA experiments confirm the structure and hydration of the final products obtained from the different polymers. A new hypothesis for the interaction between pseudopolyrotaxanes that leads to aggregation and precipitation, based on the spatial dielectric anisotropy, is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号