首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 503 毫秒
1.
Interfacial rheology of adsorbed layers of surfactants, demonstrating the response of the interface to interfacial deformations, plays a key role in formation and stability of foams and emulsions. It also provides insights into complex surfactant systems in different applications, in particular, medical treatments and diagnostics. The response of the interface is mainly determined by the composition of a surfactant system, the equilibrium and kinetic adsorption properties of the included surface-active compounds and their interaction within the adsorption layer. The subject of ongoing investigations is interfacial rheology of surfactant layers in the presence of inorganic ions. Although these ions have no surface activity, they can strongly influence the interfacial rheological properties owing to their interaction with the surface-active molecules.This work aims to present recent developments in the interfacial rheology of surfactant adsorbed layers at liquid–fluid interfaces in the presence and absence of salts, highlighting the state of the art of experimental and theoretical works in this area. We highlight drawbacks of recently developed techniques for measuring dilational interfacial properties of surfactant layers, compared with previous techniques. Moreover, this review shows the dearth of research on the ion-specific effect on the interfacial rheology of surfactant layers. This demonstrates the necessity of further investigation of the effect of ion specificity on interfacial viscoelasticity.  相似文献   

2.
Dilational and shear viscoelasticities are important properties of interfacial layers. These quantities are particularly relevant in all systems which contain a huge internal interfacial area such as foams and emulsions. Therefore, also the 3D rheological behavior of foams or emulsions studied by respective methods is superimposed by the 2D interfacial rheology.We report on recent developments in dilational and shear rheology from an experimental point of view as well as discuss the state of the art of the underlying theories. Examples of most relevant experiments are also presented and discussed. Although not yet extensively investigated, the links between bulk rheology of foams and emulsions and the rheology of the corresponding interfacial layers are discussed.  相似文献   

3.
Mixed protein–surfactant adsorption layers at liquid interfaces are described including the thermodynamic basis, the adsorption kinetics and the shear and dilational interfacial rheology. It is shown that due to the protrusion of hydrophobic protein parts into the oil phase the adsorption layers at the water–hexane interface are stronger anchored as compared to the water-air surface. Based on the different adsorption protocols, a sequential and a simultaneous scheme, the peculiarities of complexes between proteins and added surfactants are shown when formed in the solution bulk or at a liquid interface. The picture drawn from adsorption studies is supported by the findings of interfacial rheology.  相似文献   

4.
Current methods of studying the rheological properties of interfacial layers at the interfaces of fluids are reviewed. This area of research includes two-dimensional 2D rheology. Regardless of the similarities between the parameters of rheological properties of two-dimensional and bulk (three-dimensional) systems, when measuring surface properties, it is necessary to reformulate the main experimental methods to allow for the different dimensions of surface and bulk characteristics of material. Parameters of shear and dilational (measured upon expansion-compression) properties of interfacial layers are distinguished, and the latter are considered to be independent parameters of a system. The most attention was given to the rotational methods of measuring shear viscosity and the components of the complex 2D elastic modulus, as well as to measuring surface tension upon harmonic changes of the bubble (droplet) surface area, which allows characteristics of the dilational behavior of thin liquid films to be determined. Both groups of methods are widely used in laboratory practice and realized in the form of a number of original and commercial instruments. Dilational measurements of interfacial layers can also be performed with oscillations of a movable barrier on a Langmuir trough. In addition, methods based on the propagation of capillary waves across the surface of a liquid, as well as rarer methods of capillary flow in thin channels forced by either a surface tension gradient or the motion of the interface, are considered.  相似文献   

5.
The relaxation behaviour of surfactant layers provides a deep insight into the composition and structure of adsorbed layers at liquid interfaces. The development of professional experimental tools created a helpful basis for an increasing interest in these studies. In addition, the theoretical basis has been improved in many aspects such that for several surfactant systems a quantitative understanding is already possible. In particular the consideration of the changes in molar area of adsorbed molecules, introduced into the thermodynamics of adsorbed layers first by Fainerman in 1995, due to changes in the surface coverage allowed a considerably better, in many cases even quantitative understanding of the surface relaxation. Another important additional property, introduced into the thermodynamics and consequently also into the mechanisms of relaxation processes in interfacial layers, is the two-dimensional compressibility, important for the response to deformations of rather packed interfacial layers. The experimentally observed negative dilational viscosity is discussed only briefly and considered essentially in terms of experimental and theoretical shortcomings. The relaxation behaviour of nano- and microparticles, in literature often addressed is compounds able to act “instead of surfactants” are also addressed and some peculiarities discussed, while the obvious interrelation between the dilational rheology and stability of foams and emulsions is not analysed in detail.  相似文献   

6.
Each experimental method has a certain range of application, and so do the instruments for measuring dynamic interfacial tension and dilational rheology. While the capillary pressure tensiometry provides data for the shortest adsorption times starting from milliseconds at liquid/gas and tens of milliseconds at liquid/liquid interfaces, the drop profile tensiometry allows measurements in a time window from seconds to many hours. Although both methods together cover a time range of about eight orders of magnitude (10(-3) s to 10(5) s), not all surfactants can be investigated with these techniques in the required concentration range. The same is true for studies of the dilational rheology. While drop profile tensiometry allows oscillations between 10(-3) Hz and 0.2 Hz, which can be complemented by measurements with capillary pressure oscillating drops and the capillary wave damping method (up to 10(3) Hz) these six orders of magnitude in frequency are often insufficient for a complete characterization of interfacial dilational relaxations of surfactant adsorption layers. The presented analysis provides a guide to select the most suitable experimental method for a given surfactant to be studied. The analysis is based on a diffusion controlled adsorption kinetics and a Langmuir adsorption model.  相似文献   

7.
The shear and dilatational rheology of condensed interfacial layers of the water-insoluble surfactant sorbitan tristearate at the air/water interface is investigated. A new interfacial shear rheometer allows measurements in both stress- and strain-controlled modes, providing comprehensive interfacial rheological information such as the interfacial dynamic shear moduli, the creep response to a stress pulse, the stress relaxation response to a strain step, or steady shear curves. Our experiments show that the interfacial films are both viscoelastic and brittle in nature and subject to fracture at small deformations, as was supported by in-situ Brewster angle microscopy performed during the rheological experiments. Although any large-deformation test is destructive to the sample, it is still possible to study the linear viscoelastic regime if the deformations involved are controlled carefully. Complementary results for the dilatational rheology in area step compression/expansion experiments are reported. The dilatational behavior is predominantly elastic throughout the frequency spectrum measured, whereas the layers exhibit generalized Maxwell behavior in shear mode within a deformation frequency regime as narrow as two decades, indicating the presence of additional relaxation mechanisms in shear as opposed to expansion/compression. If the transient rheological response from stress relaxation experiments is considered, then the data can be described well with a stretched exponential model both in the shear and dilatational deformations.  相似文献   

8.
The surface properties of mixed system containing gemini anionic surfactant 1,2,3,4-butanetetracarboxylic sodium, 2,3-didodecyl ester and partly hydrolyzed polyacrylamide were investigated by surface tension measurements and oscillating bubble methods. The influences of surfactant concentration, dilational frequency, temperature, pH, as well as salts on dilational modulus were explored. Meanwhile, the interfacial tension relaxation method was employed to obtain the characteristic time of surface relaxation process. The polymers play important roles in changing the interfacial properties especially at lower surfactant concentration. The possible mechanism of the polymer in changing the interfacial properties is proposed. Both the hydrophobic and electrostatic interaction among the surfactants and polymers dominate the surface properties of mixed system. These dynamic properties are of fundamental interest in understanding the structure of adsorption layers, dynamics of surfactant molecules, and their interaction with polymers at the surface.  相似文献   

9.
We review the dynamics of particle laden interfaces, both particle monolayers and particle + surfactant monolayers. We also discuss the use of the Brownian motion of microparticles trapped at fluid interfaces for measuring the shear rheology of surfactant and polymer monolayers. We describe the basic concepts of interfacial rheology and the different experimental methods for measuring both dilational and shear surface complex moduli over a broad range of frequencies, with emphasis in the micro-rheology methods. In the case of particles trapped at interfaces the calculation of the diffusion coefficient from the Brownian trajectories of the particles is calculated as a function of particle surface concentration. We describe in detail the calculation in the case of subdiffusive particle dynamics. A comprehensive review of dilational and shear rheology of particle monolayers and particle + surfactant monolayers is presented. Finally the advantages and current open problems of the use of the Brownian motion of microparticles for calculating the shear complex modulus of monolayers are described in detail.  相似文献   

10.
The dilational properties of a branch-shaped polyether-type nonionic demulsifier (PEB), a comb-shaped polyether-type nonionic demulsifier (PEC), and a star-shaped polyether-type nonionic demulsifier (PES) at the decane–water interfaces were investigated by Langmuir trough method through oscillating barrier and interfacial tension relaxation methods, which are mainly in the influences of oscillating frequency and bulk concentration on dilational properties. Meanwhile, the effect of demulsifiers on interfacial dilational modulus of diluted crude oil was also explored. The experimental results indicate that all demulsifiers can decrease the dilational modulus of diluted crude oil at the experimental concentration. The addition of PEB causes the dilational modulus of crude oil to be lower than that at the water–decane interface. The demulsifier PEC has a similar effect with PES to influence the interfacial film of crude oil: at low concentration, the dilational modulus of mixed interfacial film is lower than that of demulsifier alone, while at high concentration, the dilational modulus of mixed interfacial film is slightly higher than that of demulsifier alone. The dependence of static modulus on the bulk concentration is consistent with the trend of interfacial dilational modulus with concentration for demulsifiers PEB, PEC, and PES. The studies about the structure modulus show that the new demulsifiers PEC and PES have a stronger ability than branch-shaped demulsifier PEB to destroy the interfacial film.  相似文献   

11.
Adsorbed molecules that associate or entangle with one another at the fluid interface will give rise to shearing resistance (i.e., resistance to shape change at constant area) on the continuum scale. Where these shear effects occur, familiar theoretical constructs, such as the Young-Laplace equation or the complex dilational modulus, are rendered invalid. In this work, we report numerical simulations of an oscillating pendant drop with a surface that is a shear-resisting film. Specifically, the drop surface is treated as a Boussinesq fluid (i.e., one that possesses independent viscous coefficients for dilation and shearing). We show that the frequency response of the apparent dilational modulus (based on tensions determined from the Young-Laplace equation) is remarkably consistent with the Maxwell model of viscoelasticity. It is argued, however, that usage of the Maxwell model, in the context of dilational rheology, is unphysical; as such, the apparent "Maxwellian behavior" is likely due to shear resistance within the Boussinesq material (i.e., the interface may not be undergoing any internal relaxation at all). Our results also predict an apparent "softening" of the adsorbed layer as the interfacial structure becomes more developed.  相似文献   

12.
Dynamic interfacial parameters are the key properties of interfaces in many modern technologies and can be studied in various ways. For applications like foams and emulsions, the dynamics of adsorption and the dilational and shear rheology of liquid–fluid interfaces are investigated most frequently. This work gives an insight into recently developed new experimental approaches, such as fast capillary pressure tensiometry for growing and oscillating drops. These experiments are presented in comparison to more classical techniques like drop profile tensiometry and capillary wave damping. Progress in these experiments based on generated interfacial perturbations can be expected only by a close link to respective CFD simulations. We also present the state of the art of CFD simulations, which have reached a high level during the last decade and provide a substantial basis for dynamic interfacial experiments.  相似文献   

13.
Fluid–fluid interfaces stabilized by proteins, protein aggregates, polymers, or colloidal particles, tend to have a complex microstructure. Their response to an applied deformation is often highly nonlinear, even at small deformation (rates). The nonlinearity of the response is a result of changes in the interfacial microstructure. Most of the studies on interfacial rheology of complex interfaces currently available in the scientific literature, focus on the linear response regime. Since multiphase systems such as emulsions or foam are routinely exposed to large and fast deformations, characterization of the nonlinear response of complex interfaces is highly relevant. In this paper we review the recent work on nonlinear rheology of complex interfaces, both in shear and dilatational deformations. We also discuss several methods currently available for analyzing nonlinear interfacial rheology data, and recent progress in modeling nonlinear interfacial rheology, using nonequilibrium thermodynamic frameworks.  相似文献   

14.
Depending on the bulk composition, adsorption layers formed from mixed protein/surfactant solutions contain different amounts of protein. Clearly, increasing amounts of surfactant should decrease the amount of adsorbed proteins successively. However, due to the much larger adsorption energy, proteins are rather strongly bound to the interface and via competitive adsorption surfactants cannot easily displace proteins. A thermodynamic theory was developed recently which describes the composition of mixed protein/surfactant adsorption layers. This theory is based on models for the single compounds and allows a prognosis of the resulting mixed layers by using the characteristic parameters of the involved components. This thermodynamic theory serves also as the respective boundary condition for the dynamics of adsorption layers formed from mixed solutions and their dilational rheological behaviour. Based on experimental studies with milk proteins (β-casein and β-lactoglobulin) mixed with non-ionic (decyl and dodecyl dimethyl phosphine oxide) and ionic (sodium dodecyl sulphate and dodecyl trimethyl ammonium bromide) surfactants at the water/air and water/hexane interfaces, the potential of the theoretical tools is demonstrated.The displacement of pre-adsorbed proteins by subsequently added surfactant can be successfully studied by a special experimental technique based on a drop volume exchange. In this way the drop profile analysis can provide tensiometry and dilational rheology data (via drop oscillation experiments) for two adsorption routes — sequential adsorption of the single compounds in addition to the traditional simultaneous adsorption from a mixed solution. Complementary measurements of the surface shear rheology and the adsorption layer thickness via ellipsometry are added in order to support the proposed mechanisms drawn from tensiometry and dilational rheology, i.e. to show that the formation of mixed adsorption layer is based on a modification of the protein molecules via electrostatic (ionic) and/or hydrophobic interactions by the surfactant molecules and a competitive adsorption of the resulting complexes with the free, unbound surfactant. Under certain conditions, the properties of the sequentially formed layers differ from those formed simultaneously, which can be explained by the different locations of complex formation.  相似文献   

15.
The mechanical properties of liquid-fluid systems, like the dynamic interfacial tension and interfacial rheology are closely related to the kinetic processes involved and to the behaviour of the adsorbed molecules. Therefore, provided suitable models and experimental methods are set, investigating these properties allows qualitative and quantitative information on these processes to be drawn. This paper presents recent developments in dilational rheology of liquid-fluid adsorption layers, including experimental methods, models and experimental data concerned with surfactants undergoing transformations in the adsorption layer. Models account both for relaxation due to surfactant diffusion and to processes internal to the adsorption layer. In particular surfactant reorientation, aggregation phase transitions and interfacial chemical reactions have been considered as possible reorganisation processes. The presented approach, allows the dilational viscoelasticity to be derived as a function of the perturbation frequency and of the equilibrium and kinetic parameters of the system. The results can also be easily specified for insoluble monolayer. The principal experimental techniques are reviewed and the recent progresses in the implementation of an Oscillation Bubble/Drop method for Capillary Pressure Tensiometer are discussed in detail. Two experimental studies of surfactants characterised by re-orientation and aggregation phase transition are presented. Beside providing a wider comprehension of these mechanisms, the interpretation of the dilational visco-elasticity data, according to the developed models, allows the effective estimation of the equilibrium and kinetic parameters.  相似文献   

16.
Surface rheology governs a great variety of interfacial phenomena such as foams or emulsions and plays a dominant role in several technological processes such as high-speed coating. Its major difference with bulk rheology resides in the high compressibility of the surface phase, which is the direct consequence of the molecular exchange between adsorbed and dissolved species. In analogy to bulk rheology, a complex surface dilational modulus, epsilon, which captures surface tension changes upon defined area changes of the surface layer, can be defined. The module epsilon is complex, and the molecular interpretation of the dissipative process that gives rise to the imaginary part of the module is subject to some controversy. In this contribution, we used the oscillating bubble technique to study the surface dilational modulus in the mid-frequency range. The dynamic state of the surface layer was monitored by a pressure sensor and by surface second-harmonic generation (SHG). The pressure sensor measures the real and imaginary part of the modulus while SHG monitors independently the surface composition under dynamic conditions. The experiment allows the assessment of the contribution of the compositional term to the surface dilational modulus epsilon. Two aqueous surfactant solutions have been characterized: a surface elastic and a surface viscoelastic solution. The elastic surface layer can be described within the framework of the extended Lucassen-van den Tempel Hansen model. The change in surface concentration is in phase with the relative area change of the surface layer, which is in strong contrast with the results obtained from the surface viscoelastic solution. Here, surface tension, area change, and surface composition are phase-shifted, providing evidence for a nonequilibrium state within the surface phase. The data are used to assess existing surface rheology models.  相似文献   

17.
Foams and emulsions are often exposed to strong external fields, resulting in large interface deformations far beyond the linear viscoelastic regime. Here, we investigate the nonlinear and transient interfacial rheology of adsorption layers in large-amplitude oscillatory shear flow. As a prototypical material forming soft-solid-type interfacial adsorption layers, we use Acacia gum (i.e., gum arabic), a protein/polysaccharide hybrid. We quantify its nonlinear flow properties at the oil/water interface using a biconical disk interfacial rheometer and analyze the nonlinear stress response under forced strain oscillations. From the resulting Lissajous curves, we access quantitative measures recently introduced for nonlinear viscoelasticity, including the intracycle moduli for both the maximum and zero strains and the degree of plastic energy dissipation upon interfacial yielding. We demonstrate using in situ flow visualization that the onset of nonlinear viscoelasticity coincides with shear localization at the interface. Finally, we address the nonperiodic character of this flow transition using an experimental procedure based on opposing stress pulses, allowing us to extract additional interfacial properties such as the critical interfacial stress upon yielding and the permanent deformation.  相似文献   

18.
This Honorary Note is dedicated to the 65th birthday of Valentin Fainerman and summarizes some of his contributions to the field of interfacial dynamics. First of all, he made the maximum bubble pressure tensiometry the most frequently used methodology in the short time range of surfactant adsorption at liquid surfaces. This work allows us now to use experimental data down to the time range of sub-milliseconds for analyzing adsorption mechanisms of surfactants and polymers and their mixtures. The contributions of V.B. Fainerman to the quantitative understanding of the thermodynamics of adsorption represent a significant step ahead and describe adsorption layers even of rather complex nature, such as mixed protein–surfactant layers. These models consider molecular interfacial reorientation and aggregation. His thermodynamic approach is able to explain various interfacial systems which includes for example also phase transitions in insoluble monolayers. Based on diffusional transport and the proposed thermodynamic models, the adsorption kinetics and dilational rheology of liquid interfacial layers have reached a new level of understanding.  相似文献   

19.
The dilational properties of anionic gemini surfactants alkanediyl-α,ω-bis(m-octylphenoxy sulfonate) (C8CmC8) with polymethylene spacers at the water–air and water–decane interfaces were investigated by oscillating barriers and interfacial tension relaxation methods. The influences of oscillating frequency and bulk concentration on the dilational properties were explored. The experimental results show that the linking spacer plays an important role in the interfacial dilational properties. The moduli pass through one maximum for all three gemini surfactants at both water–air and water–decane interfaces. However, the values of moduli at the water–air interface are obviously higher than those at the water–decane interface because the sublayer formed by spacer chains will be destroyed by the insertion of oil molecules. Moreover, with the increase of spacer length, the surface adsorption film becomes more viscous at high concentration, which can be attributed to the process involving the formation of the sublayer. On the other hand, the spacers of the adsorbed C8C6C8 molecules will extend into the oil phase when the interface is compressed. As a result, the interfacial film becomes more elastic with the increase of spacer length at high concentration. The experimental results obtained by the interfacial tension relaxation measurements are in accord with those obtained by the oscillating barriers method.  相似文献   

20.
This article aims to determine the applicability of interfacial dilational rheology to study the formation of viscoelastic film at the oil/water interface by reaction between tetrameric acids ARN and calcium ions, and to determine the influence of asphaltenes and naphthenic acids (NA) on this film. It was first found that the formation of viscoelastic film by reaction between ARN and calcium ions is easily observed by dilational rheology: Significantly high values of E′ (130?mN/m) were measured for this system at low ARN concentration (10?µM). These values are at least 5 to 10 times higher than values obtained for ARN without Ca2+ or other crude oil components such as asphaltenes and naphthenic acids.

The influence of asphaltenes and NA on the viscoelastic film formation has been studied. When asphaltenes or NA are present, the interfacial viscoelastic film is weakened: There is a gradual decrease of E′ and E″ when the asphaltenes or NA concentration increases. These two components can therefore inhibit the ARN/Ca2+ film formation. This decrease is similar to the one previously observed by shear rheology. Several explanations are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号