首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The time differential perturbed angular correlation technique has been used to study the combined magnetic and electric hyperfine interactions at the site of a111Cd impurity in the rare earth ferromagnets Gd, Tb, Dy, Ho, Er, and Tm at 4.2 °K. The following magnetic hyperfine fields at the site of111Cd have been found: ¦H hf ¦=340(7) kG in Gd, 275 (5) kG in Tb, 221 (4) kG in Dy, 116 (3) kG in Er and 60 (6) kG in Tm. In Ho two magnetically different sites were observed with magnetic fields of 159 (3) and 139 (3) kG. Both sites are equally populated. The coupling constantJ 5f of the conduction electron-4f interaction has been calculated for the different rare earth metals from the measured hyperfine fields by means of the RKKY theory.  相似文献   

2.
Nishimura  K.  Mori  K.  Ohya  S.  Muto  S.  Hutchison  W.D.  Harker  S.J.  Chaplin  D.H. 《Hyperfine Interactions》1999,120(1-8):203-207
Low-temperature nuclear orientation was applied to study hyperfine interactions of 142Pr, 147Nd and 143,144Pm nuclei in Pr0.5Nd0.5Ni single crystal. Angular distributions, temperature dependence and external magnetic field effects on the γ-ray anisotropy are presented. A Nd-Pm exchange interaction seems to dominate the magnetic properties of Pm ions in this system. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Goto  J.  Ohya  S.  Ohtsubo  T.  Kawamura  Y.  Muto  S.  Nishimura  K.  Tanigaki  M.  Taniguchi  A.  Ohkubo  Y.  Kawase  Y. 《Hyperfine Interactions》2001,136(3-8):561-566
Low-temperature nuclear orientation (LTNO) experiments were performed on 151Pm implanted into iron and 147Nd implanted into nickel. The γ-ray anisotropy measurements yielded values of the magnetic hyperfine field and the substitutional fractions of these ions in the host metals. An observed discrepancy between the substitutional fractions obtained from the 91 keV and 531 keV data on 147NdNi is briefly discussed. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

4.
Time differential perturbed angular correlation spectra of111Cd in ferromagnetic polycrystalline Dy have been measured at 4.2 K in external magnetic fields up to 60 kG. The experimental data were well reproduced by a calculation which assumed that the angular distribution of the magnetic hyperfine fields is identical to that of the magnetic moments of the 4f-shells. The distribution of the 4f-moments was derived from magnetic anisotropy data. The results of this work seem to justify the application of the integral perturbed angular correlation technique for the determination of magnetic hyperfine fields in incompletely polarized ferromagnetic samples. The magnetic hyperfine fields of177Hf:Gd and177Hf:Dy have been measured by this method as:H hf(Hf:Gd)=–375(60)kG andH hf(Hf:Dy)=–225(45)kG.  相似文献   

5.
The temperature dependence of the magnetic and electric hyperfine interactions at the site of 181Ta impurities in polycrystalline Dy has been measured between 4.2 and 178 K using the time differential perturbed angular correlation technique. The value of the magnetic hyperfine field at 4.2 K is: |Hhf(TaDy)| = 212(9) kG The temperature dependence of the magnetic hyperfine field follows closely the prediction of the molecular field model.  相似文献   

6.
The combined magnetic and electric hyperfine interaction of dilute193Ir impurities in ferromagnetic Gd has been investigated by means of the Mössbauer effect. The magnetic hyperfine field of193Ir in Gd at 4.2 K is: |H hf(Ir:Gd)|=624(6) kG.The electric fieldgradient at the site of Ir in Gd is:V zz (Ir:Gd)=+19.5(5.0) × 1017 V/cm2.The fieldgradient is axially asymmetric with an asymmetry parameter of 0.53(2)1.  相似文献   

7.
The radioactivity181Hf was implanted into pure Co and Fe hosts with the help of an isotope separator. The ferromagnetic hosts produce very strong magnetic hyperfine interactions at the nuclear site of Ta atoms. These hyperfine interactions were studied by time-differential measurements of the 133 keV conversion electron — 482 keV γ angular correlation. It is found that in both hosts an appreciable fraction of Hf atoms occupies regular lattice sites after the implantation. Using the knowng-factor of the 482 keV state of181Ta the magnetic hyperfine fieldsH hf=±362.4(5.0) and ±596(18) kG for the Co and Fe hosts, respectively, were deduced These fields fit nicely into the systematics of the hyperfine fields for the 5d transition elements but are not well accounted by the existing theoretical models.  相似文献   

8.
The Mössbauer spectrum of BaFe4Sn2O11 has been recorded for both 57Fe and 119Sn isotopes at a variety of temperatures. In the paramagnetic state the 57Fe spectra are interpreted in terms of three iron environments. Magnetic ordering begins at 77 K and is virtually complete by 4.2 K to give an average magnetic hyperfine field of 504 kG. The 119Sn spectra also reflect the magnetic ordering and a magnetic hyperfine field of 45 kG is transferred to the tin nuclei.  相似文献   

9.
The properties of ferromagnetic Gd as a host for IMPAC measurements have been investigated. The transient and internal magnetic fields at Cd, Nd, Sm, Dy, Er, Yb and Hf nuclei recoil implanted into polarized Gd at 80 K have been studied by the IMPAC technique. All available experimental transient field data for Gd have been analysed in the framework of the Lindhard-Winther theory. Empirical values of the parametersv p andC ion C atom have been deduced which give good agreement between experiments and theory. Internal magnetic fields at rare-earth nuclei in magnetized Gd at 80 K have been deduced. The results areH h.f. (NdGd)=?1370±440 kG,H h.f.(SmGd)=?1440±120 kG,H h.f.(DyGd)=1410±400 kG,H h.f.(ErGd)=2310±420 kG andH h.f.(YbGd)=?216±32 kG. The signs of these fields are, except for Yb which is in a 2+ ionic state, consistent with a ferromagnetic coupling between the 4f spins of the implanted ion and the Gd host. The deduced internal field at Hf in Gd is ?440±90 kG. The observed time-dependent interactions for rare-earth nuclei in ferromagnetic Gd are consistent with the Abragam-Pound theory. For the Cd isotopes,g-factors of the first 2+ states were deduced from the experiments. The results areg(110Cd)=0.49±0.11,g(114Cd)=0.34±0.09 andg(116Cd)=0.41±0.11. The use of transient magnetic fields forg-factor measurements on high-spin rotational states is discussed.  相似文献   

10.
Integral perturbed angular correlations of the 931-155keVγγ-cascade of188Os in Gd have been measured. With this technique the combined magnetic and electric hyperfine interaction of the 155 keV level of188Os as an impurity in a Gd host has been studied as a function of temperature. The result for the electric field gradient of Os in Gd at 300 K is: $$\left| {V_{zz} \left( {Os:\underline {Gd} } \right)} \right| = \left( {12.8_{ - 1.9}^{ + 3.1} } \right) \cdot 10^{17} {V \mathord{\left/ {\vphantom {V {cm^2 }}} \right. \kern-\nulldelimiterspace} {cm^2 }}.$$ For the magnetic hyperfine field at 4.2 K the value $$H_{hf} \left( {Os:\underline {Gd} } \right) = - 134\left( {26} \right)kG$$ was obtained. Sign and magnitude of the magnetic hyperfine field suggest the existence of a localized moment of about ?0.4 µ B at the site of Os in Gd. With increasing temperature the magnetic hyperfine field decreases much stronger than the magnetization of the host. Possible explanations for this anomalous temperature dependence are discussed.  相似文献   

11.
The magnetic hyperfine fieldH hf at181Ta impurities in the ferromagnetic Rare Earth metals Ho and Er has been determined by time differential perturbed angular correlation measurements at 4.2 K. The results |H hf(TaHo)|=101(8)kG |H hf(TaEr)|= 94(8)kG together with the previously determined values ofH hf(TaGd) andH hf(TaDy) show that the magnetic hyperfine field at Ta impurities in the Rare Earth metals is predominantly due to the conduction electron polarization of the hosts.  相似文献   

12.
The magnetic hyperfine fieldH hf and the electric field gradientV zz at181Ta impurties in metallic Gd were determined by time differential perturbed angular correlation measurements with the 133 keV K-conversion electron 482 keV -cascade of181Ta. The sources for these measurements were prepared by implantation of radioactive181Hf ions into Gd. The results are: |H hf(TaGd; 77 K)|=285(14)kG, and |V zz(TaGd; 330 K)|=5.32(15)·1017V/cm2. The value ofH hf fits well into the systematics for 5d impurities in Gd and indicates a positive core polarisation contribution, which is expected if the conduction electrons of Gd have to a large extent d-character. The electric field gradients of the 5d impurities in Gd are not consistent with a proportionality between the ionic and the electronic contribution.  相似文献   

13.
Perturbed gamma-gamma angular correlation (PAC) technique was used to measure the hyperfine interactions in the intermetallic compound GdPdIn using 111In→ 111Cd and 140La→ 140Ce probe nuclei at the In and Gd sites, respectively. The PAC results for 111Cd show two well-defined electric quadrupole frequencies above T C assigned to probes occupying Gd and In sites, with ~50% of site occupation each. The fraction corresponding to In sites increases with temperature reaching 95% around 500 K. Below T C the measurements for 111Cd probe showed combined electric quadrupole plus magnetic dipole interaction with sharp increase in the magnetic field below around 80 K. A pure magnetic interaction with lower hyperfine field values was observed at the Gd sites occupied by 140Ce below 100 K.  相似文献   

14.
The magnetic and electric hyperfine splitting frequencies ¦gμ N B HF/h¦ ande 2 qQ/h of the 5/2?1/2[541] ground state of 14h 185Ir in Ni were measured with nuclear magnetic resonance on oriented nuclei to be 360.8(7) MHz and +6.7(2.0) MHz, respectively. The ground state magnetic dipole moment and electric quadrupole moment of185Ir are deduced to be ¦μ¦=2.601 (14)μ N andQ=?1.9(5)b, taking values for the hyperfine field and electric field gradient of BHF=?454.9 (2.3) kG and eq=?0.151(4) × 1017 V/cm2, respectively. The negative quadrupole moment is in agreement with nuclear-orientation data and proves again theI π K=5/2? 1/2 ground state configuration.  相似文献   

15.
The hyperfine interaction of dilute57Fe in the rare earth (RE)metals Gd to Lu was investigated by Mössbauer measurements with57Co doped RE sources. In all hosts well split, 2-lines spectra were observed at room temperature, with slight asymmetries of the line intensities in some cases. The quadrupole splitting eQVzz/2 increases from 0.29 mm/sec for Gd to 0.50 mm/sec for Tb, and decreases by less than 10 % between Tb and Lu. Only about 10 % of the corresponding electric fieldgradient (EFG) can be accounted for by the ionic EFG on a substitutional RE site. The temperature dependence of the EFG was measured in the case of Tb. No variation within 3 percent was found between 300 K and 700 K. Measurements of the magnetic hyperfine interaction at low temperatures were carried out in Tb. The saturation field of57Fe in this host is Hhf(FeTb;4.2 K)=25(2) KOe. The temperature dependence of the magnetic hyperfine field does not follow the host magnetization (Tc=220K) but vanishes at about 80 K. Similar anomalies of Hhf(T) have previously been observed for other transition element impurities in the RE ferromagnets.  相似文献   

16.
The decoupling experiments involving the time-differential perturbed angular correlation (TDPAC) of the 133–482 keV γ-γ cascade in the presence of an external magnetic field applied along the quantization axis have been performed to measure the electric quadrupole and the magnetic hyperfine interactions experienced by the181Ta nuclei at Hf sites in the pseudobinary compounds HfFe2-xSix, withx=0.1 andx=0.3. The hyperfine magnetic fields measured at 298 K areH hf=133.1±12.0 kG in the cubic (C15) Laves phase compound HfFe1.9Si0.1 andH hf=76.8±7.0 kG in the hexagonal (C14) Laves phase compound HfFe1.7Si0.3. The decoupling technique has also been used to obtain a —ve sign for the hyperfine field experienced by181Ta nuclei at the Ti or Hf sites in the Heusler compound Co2Ti0.8Hf0.2Sn and a+ve sign for the hyperfine field at Zr sites in the cubic (C15) Laves phase compound ZrFe2.  相似文献   

17.
The time-differential perturbed angular correlation (TDPAC) experiments involving the 133–482 keV γ-γ cascade in181Ta have been performed in the presence of an external magnetic field along the quantization axis to measure the hyperfine magnetic field experienced by181Ta nuclei at the Hf site in the pseudobinary compounds HfFe2?xSix with x=0.1 and x=0.3. The hyperfine magnetic fields measured at 298 K are Hhf=133.1±12.0 kG in the cubic (C15) Laves phase compound HfFe1.9Si0.1 and Hhf=76.8±7.0 kG in the hexagonal (C14) Laves phase compound HfFe1.7Si0.3. The measured hyperfine fields are discussed within the framework of the Campbell-Blandin model.  相似文献   

18.
The magnetic hyperfine field of Ba in ferromagnetic Ni has been measured by time differential perturbed angular distribution technique using the 13 ns 10+ isomeric state in 132Ba as probe which was populated in the reaction 12C(124Sn, 4n) 132Ba at beam energy of 60 MeV. The hyperfine field extracted from the observed Larmor precession frequency comes out to be ?84(5) kG. Our experimental results show good agreement with theoretical calculations performed within local density approximation of the density functional theory. The hyperfine field data presented here would be useful towards accurate determination of g-factor in other high spin states in Ba isotopes.  相似文献   

19.
The temperature dependence of the precession of the angular correlation of decay gamma rays from swift150Sm (2 1 + ) ions traversing a gadolinium foil has been found to be proportional to the foil magnetization, supporting the assertion that the transient hyperfine magnetic field acting on these ions is proportional to the magnetization of the hosts (iron or gadolinium). Similar experiments on194Pt (2 1 + ) ions traversing iron and gadolinium foils are consistent with both the magnetic moment obtained from Rutgers experiments on iron and with a hyperfine field at Pt ions larger for gadolinium than for iron foils, in agreement with the Chalk River parametrization for heavy nuclei traversing gadolinium foils. Finally, the magnetic moments of the 2 1 + states in144–150Nd,145,150Sm and152Gd have been measured. These data support the evidence of shell closure atZ=64 forN≤88 andZ=50 forN>90.  相似文献   

20.
Time differential perturbed angular correlation measurements of Gd160 in ferromagnetic Gd at various temperatures and of Yb176 in Fe and Ni have been performed following Coulomb excitation with a pulsed beam and recoil implantation. Using the theory of combined static magnetic and electric hyperfine interaction the measured time spectra are reasonably well reproduced, the magnetic fields and electric field gradients being in agreement with other works. A phase shift of the Larmor precession, however, points to anomalous hyperfine fields acting on the nuclei in a very short time interval after the beam pulse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号