首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A liquid crystal polymer (LCP) was used to improve the physical properties of glass fiber reinforced polypropylene (GFRPP). The LCP was beneficial to improve the mechanical and heat resistant properties of the GFRPP/LCP composite. Compared with the GFRPP with 30% (w%) glass fiber (GF), the yield strength and the impact strength for the GFRPP/LCP composites increased by 62.7% and 18.1%, respectively, with a 6.8°C increase in the Vicat softening temperature for a 5% LCP addition to the GFRPP composites. The crystallinity of the polypropylene (PP) matrix for the GFRPP/LCP composites increased for 5% LCP and then decreased with increasing the LCP content. The γ-phase crystals for the PP matrix occurred in the shear layer of the injection molded GFRPP/LCP samples. The improved adhesion interface between the GF and the PP matrix was beneficial to reinforce and toughen the GFRPP/LCP composites with a small addition of the LCP.  相似文献   

2.
Interface is the key topic of developing advanced fiber reinforced polymeric composites. Novel advanced glass woven fabric (GF) reinforced composites, coded as GF/mBT, were prepared, of which the matrix resin was hyperbranched polysiloxane (HBPSi) modified maleimide-triazine (mBT) resin. The influence of the composition of the matrix on the interfacial nature of the GF/mBT composites were studied and compared with that of the composite based on GF and BT resin using contact angle, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and dielectric properties over wide frequency and temperature ranges. Results show that the interfacial nature of the composites is dependent on the chemistries of the matrices, mBT matrices have better interfacial adhesion with GF than BT resin owing to the formation of chemical and hydrogen bonds between mBT resin and GF; while in the case of mBT resins, the content of HBPSi also plays an important role on the interfacial feature and thus the macro-performance. Specifically, with increasing the content of HBPSi in the matrix, the interlaminate shear strength of corresponding composites significantly improves, demonstrating that better interfacial adhesion guarantees outstanding integrated properties of the resultant composites.  相似文献   

3.
Clay-philic benzothiazole sulfide, capable of donating electrons, is grafted onto polypropylene (PP) backbones when N-cyclohexyl-2-benzothiazole sulfonamide (CBS), a commonly used accelerator in the tire industry, is included in the processing of PP/halloysite nanotubes (HNTs) composites. CBS decomposes at elevated temperature and yields benzothiazole sulfide radicals, which react with the PP polymeric free radicals generated during the processing of the composites. On the other hand, the benzothiazole group of CBS is reactive to HNTs via electron transferring. The compatibilization between HNTs and PP is thus realized via interfacial grafting and electron transferring mechanism. The interfacial interactions in the compatibilized systems were fully characterized. Compared with the control sample, the dispersion of HNTs and the interfacial bonding are enhanced substantially in the compatibilized composites. The significantly improved mechanical properties and thermal properties of benzothiazole sulfide compatibilized PP/HNTs composites are correlated to the enhanced interfacial property. The present work demonstrates a novel interfacial design via interfacial grafting/electron transferring for the compatibilization of PP/clay composites.  相似文献   

4.
Long glass fiber (LGF)-reinforced polypropylene (PP) was prepared using a self-designed impregnation device. The effect of dicumyl peroxide (DCP) and maleic anhydride (MA) content on the compatibilizer, PP grafted with maleic anhydride (PP-g-MA), was investigated by means of scanning electron microscopy (SEM) and mechanical properties. The experimental results demonstrated that the increase of DCP and MA could effectively improve the interfacial interaction between PP and GF. Good interfacial adhesion between PP and GF in PP/ PP-g-MA /LGF composites was observed from SEM studies for the higher contents of MA. The best mechanical properties of PP/ PP-g-MA /LGF(30%) composites were obtained when the content of DCP and MA were 0.4 and 0.8 wt%, respectively. The storage modulus of the PP/PP-g-MA/LGF composites increased and then decreased with the content of MA. When the content of MA was 0.8 wt%, tan δ had the lowest value, indicating that the corresponding composites had the best compatibility.  相似文献   

5.
《Composite Interfaces》2013,20(6):367-378
The strength of GF/PP injection molded parts is reduced by the existence of a weldline. In this paper, the effect of molecular weight of matrix PP, GF content, GF surface treatment, GF shape (diameter and chopped strand length), MAH-PP content and interfacial properties on the weldline strength in GF/PP has been studied. Since the fibers orient vertically to the flow direction, effective reinforcement cannot be obtained at the weldline. Such fiber direction at the weldline cannot be controlled by the molecular weight of matrix, GF content and GF shapes. On the other hand, strength of the weld specimens increases when the amount of silane coupling agents and the MAH-PP content increase. Therefore, it is suggested that the weldline strength is affected by the strength of interfacial adhesion between GF and matrix.  相似文献   

6.
Long-term hydrothermal aging of polyamide 6 (PA6)/glass fibre (GF) composites was conducted and the effects of the GF on variations of structure and properties of the composites with aging time were investigated. It was found that the first stage of aging was a Fickian process and corresponded to the physical absorption of water until equilibrium, resulting in a slight change of reduced viscosity and chemical structure of the PA6. The water diffusing process was slowed down slightly by addition of the GF. The second stage of aging was the initiation process of hydrolytic degradation of PA6, resulting in a rapid decrease of reduced viscosity and an increase of end group content. In the final stage of aging, the relative weight gain (Wr) dropped, the reduced viscosity decreased and the end groups increased slowly. The degradation rate and carbonyl index of PA6 increased with increasing GF content, and the increasing rate of end groups concentration of the composites was higher than that of pure PA6 during the aging process, indicating addition of GF accelerated the hydrolysis degradation and oxidative aging of PA6. In mechanical property tests, compared with unaged samples of the composites which underwent matrix rupture around the matrix-fiber interfacial layer, for aged samples several smooth fibres without coatings were pulled out and the interfacial debonding was the main failure mode, causing severe deterioration in mechanical properties. The hydrolytic degradation activation energy (Ea) was calculated through a method based on the Arrhenius model by considering both temperature and humidity as environment factors; with increasing GF content, Ea decreased, indicating that the addition of GF made PA6 easier to degrade.  相似文献   

7.
《Composite Interfaces》2013,20(1-2):25-39
The effects of surface grafting of a polymer onto lignocellulosic fiber surface and processing methods on both the interfacial interactions and the resulting composite properties of the fiber-reinforced thermoplastic composites were investigated. Chemithermomechanical pulp (CTMP) wood fiber was used as a reinforcement, which has been chemically modified by radical polymer grafting of styrene onto the fiber surfaces. The chemically modified CTMP fiber was then compounded with polystyrene (PS). Two different processing methods, both compression and injection moldings, were performed to prepare the wood-fiber-reinforced composites. Experimental results showed that surface modification of wood fiber leads to an obvious increase in mechanical properties of the fiber-reinforced composites as compared to the untreated fiber composites. The enhancement of mechanical properties is much greater through injection molding compared with compression molding owing to occurrence of orientation, and better mixing and interaction between the fiber and the matrix by injection molding. An improvement in fiber wetting properties and adhesion by the matrix was observed through scanning electron microscopy for the surface grafted fiber reinforced composites. Untreated wood fiber exhibited a smooth surface without adhered polymer, indicating poor adhesion, while polymer attached to the surface was seen on treated cellulose fiber due to the higher fiber-matrix interactions.  相似文献   

8.
The surface of the glass fiber (GF) was modified by silane coupling agent (KH550) and bovine serum albumin (BSA), and then the graphene oxide (GO) was coated onto the modified surface of the glass fiber. Followed by a reduction reaction, the reduced graphene oxide (RGO) coated on glass fiber was obtained. Finally, the reduced graphene oxide-glass fibers (RGO-GF) were combined with unsaturated resins. The interfacial morphology of reduced graphene oxide-glass fibers was investigated by scanning electron microscopy (SEM). The structure of the materials was analyzed by Fourier transform infrared spectroscopy (FT-IR). The crystal phases of the material were identified by X - ray diffraction (XRD). The mechanical properties and electromagnetic shielding effectiveness of the sample were tested. The results showed that the interface between glass fibers and graphene binds more closely after the glass fibers was treated by KH550. The tensile strength of the RGO-GF composites reached 85.05 MPa. Compared with the GF composites, it increased by 51.4% when the glass fibers content was 30%. The shielding effectiveness of the composites reached 21.3 dB at the frequency range of 8.2–12.4 GHz (x-band). Therefore, by coating the surface with reduced graphene oxide, the glass fibers can make a great shielding effect on the electromagnetic wave.  相似文献   

9.
《Composite Interfaces》2013,20(2):171-205
Sisal fibers have been used for the reinforcement of polypropylene matrix. The compatibilization between the hydrophilic cellulose fiber and hydrophobic PP has been achieved through treatment of cellulose fibers with sodium hydroxide, isocyanates, maleic anhydride modified polypropylene (MAPP), benzyl chloride and by using permanganate. Various fiber treatments enhanced the tensile properties of the composites considerably, but to varying degrees. The SEM photomicrographs of fracture surfaces of the treated composites clearly indicated the extent of fiber–matrix interface adhesion, fiber pullout and fiber surface topography. Surface fibrillation is found to occur during alkali treatment which improves interfacial adhesion between the fiber and PP matrix. The grafting of the fibers by MAPP enhances the tensile strength of the resulting composite. It has been found that the urethane derivative of polypropylene glycol and cardanol treatments reduced the hydrophilic nature of sisal fiber and thereby enhanced the tensile properties of the sisal–PP composites, as evident from the SEM photomicrographs of the fracture surface. The IR spectrum of the urethane derivative of polypropylene glycol gave evidence for the existence of a urethane linkage. Benzoylation of the fiber improves the adhesion of the fiber to the PP matrix. The benzoylated fiber was analyzed by IR spectroscopy. Experimental results indicated a better compatibility between benzoylated fiber and PP. The observed enhancement in tensile properties of permanganate-treated composites at a low concentration is due to the permanganate-induced grafting of PP on to sisal fibers. Among the various treatments, MAPP treatment gave superior mechanical properties. Finally, experimental results of the mechanical properties of the composite have been compared with theoretical predictions.  相似文献   

10.
Yin Jian  Li Ming 《Composite Interfaces》2018,25(12):1115-1125
The mechanical properties of bamboo fiber composites depend on the interfacial strength between fiber and high-density polyethylene (HDPE) matrix. Different poly (amido amine) (PAMAM) dendrimers were grafted onto bamboo fiber to improve the interfacial strength of the resulting composites. The surface morphology of the resulting materials was characterized by scanning electron microscopy and atomic force microscope. Surface characteristic the bamboo fiber surface were examined by X-ray photoelectron spectroscopy and Fourier transform infrared (FT-IR). The characterization results revealed that PAMAM were chemically grafted onto the surface of bamboo fiber.  相似文献   

11.
The mechanical properties of carbon fiber reinforced polymer composites depend upon fiber-matrix interfacial properties. To improve the mechanical properties of ?bers/PTFE composites without sacri?cing tensile strength of ?bers, graphene oxide (GO) was introduced onto the surface of CFs by chemical vapour deposition (CVD). This hybrid coating increased the wettability and surface roughness of carbon fibers, which led to improved affinity between the carbon fibers and PTFE matrix. The resulting hybrid-coated carbon fiber-reinforced composites showed an enhancement in the short beam strength compared to un-coated carbon fiber composites. Meanwhile, a signi?cant increase of interlaminar shear strength (ILSS), interface shear strength tests (IFSS) and impact property were achieved in the 5-min-modi?ed CFs.  相似文献   

12.
Controlling interfacial microstructure and interactions between (ultra high molecular weight polyethylene) UHMWPE fiber and matrix is of crucial importance for the fabrication of advanced polymer composites. In this paper, (UHMWPE fiber-g-graphene oxide [GO]) was prepared. GO nanoparticles distributed onto the ?ber surface uniformly, which could increase surface polarity and roughness. Increases of interlaminar shear strength (ILSS) and interfacial shear strength (IFSS) of UHMWPE fiber-g-GO composites were achieved. These enhancements can be attributed to the existent of GO interface with providing chemical bonding and strong mechanical interlocking between the ?ber and matrix. Moreover, impact resistance of UHMWPE fiber-g-GO composites was enhanced.  相似文献   

13.
《Composite Interfaces》2013,20(6):401-415
Polypropylene sheets are treated with oxygen plasma for the interfacial control of GF/PP composites. The interfacial strength between glass fabric and PP resin is estimated by the T-peel test method. The evaluation of T-peel test data is done by both the T-peel strength method and the T-peel amplitude method. The T-peel strength value and T-peel amplitude value were respectively increased to about 50% and 120% compared with each value of non-treated specimens. The T-peel strength relates to the surface energy on the PP-sheet and the T-peel amplitude relates to the fracture pattern of the delamination surface. From SEM observations on the delamination surface, many voids in the space enclosed with fiber bundles are observed in the case of non-treated specimen and no void and fiber bridging are observed on the plasma treated specimens. It is found that interfacial properties between fiber and resin are improved by this plasma process.  相似文献   

14.
《Composite Interfaces》2013,20(4):275-289
This work was undertaken in order to increase the understanding of the mechanism responsible for fiber/matrix interaction in carbon fiber/thermoplastic composite. From results of previous study on carbon fiber/PEEK composite, which suggested that the formation of the fiber/ matrix interaction was primarily related to a chemisorption mechanism, a study was done of the conditions required to obtain efficient fiber/matrix interaction in PA-12 and PP/carbon fiber composites. The interest in studying carbon fiber composite based on PP and PA-12 was that these two matrices are very different in terms of reactivity, polyamide having many more reactive groups than polypropylene. As expected, due to the non-reactive chemical structure of the polypropylene, fiber/matrix interaction in carbon fiber/PP composite occurred only when the matrix was thermally degraded, i.e. when the composite was molded at high temperature or under long residence time at the melt temperature. For the carbon fiber/PA-12 composite, strong fiber/matrix interaction occurred readily at relatively low molding temperature, i.e. well before thermal degradation of the matrix. It was also found that the short beam shear strength in these composites seems to evolve with molding temperature, and a maximum interfacial strength was observed at a molding temperature corresponding to the thermal degradation of the matrix. This indicates that although matrix degradation often results in strong reduction in the composite performance, some matrix degradation can be beneficial in terms of interfacial mechanical properties. Finally, this work demonstrated that while the formation of fiber/matrix interaction seems to be primarily related to a chemisorption mechanism, the contribution of interphase crystallinity to the interfacial strength is not negligible. In fact, interfacial crystallinity was found to be essential to ensure optimum interfacial strength.  相似文献   

15.
《Composite Interfaces》2013,20(2-3):169-191
Natural fiber reinforced renewable resource based laminated composites were prepared from biodegradable poly(lactic acid) (PLA) and untreated or surface-treated pineapple leaf fibers (PALF) by compression molding using the film stacking method. The objective of this study was to determine the effects of surface treatment of PALF on the performance of the fiber-reinforced composites. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) were used to aid in the analysis. The mechanical properties of the PLA laminated composites were improved significantly after chemical treatment. It was found that both silane- and alkali-treated fiber reinforced composites offered superior mechanical properties compared to untreated fiber reinforced composites. The effects of temperature on the viscoelastic properties of composites were studied by dynamic mechanical analysis (DMA). From the DMA results, incorporation of the PALF fibers resulted in a considerable increase of the storage modulus (stiffness) values. The heat defection temperature (HDT) of the PALF fiber reinforced PLA laminated composites was significantly higher than the HDT of the neat PLA resin. The differential scanning calorimeter (DSC) results suggest that surface treatment of PALF affects the crystallization properties of the PLA matrix. Additionally, scanning electron microscopy (SEM) was used to investigate the distribution of PLA within the fiber network. SEM photographs of fiber surface and fracture surfaces of composites clearly indicated the extent of fiber–matrix interface adhesion. It was found that the interfacial properties between the reinforcing PALF fibers and the surrounding matrix of the laminated composite are very important to the performance of the composite materials and PALF fibers are good candidates for the reinforcement fiber of high performance laminated biodegradable biocomposites.  相似文献   

16.
《Composite Interfaces》2013,20(4):347-355
The fracture properties of particulate-reinforced metal matrix composites (MMCs) are influenced by several factors, such as particle size, inter-particle spacing and volume fraction of the reinforcement. In addition, complex microstructural mechanisms, such as precipitation hardening induced by heat treatment processing, affect the fracture toughness of MMCs. Precipitates that are formed at the particle/matrix interface region, lead to improvement of the interfacial strength, and hence enhancement of the macroscopic strength properties of the composite material. In this paper, a micro-mechanics model, based on thermodynamics principles, is proposed to determine the fracture strength of the interface at a segregated state in MMCs. This model uses energy considerations to express the fracture toughness of the interface in terms of interfacial critical strain energy release rate and elastic modulus. The interfacial fracture toughness is further expressed as a function of the macroscopic fracture toughness and mechanical properties of the composite, using a toughening mechanism model based on crack deflection and interface cracking. Mechanical testing is also performed to obtain macroscopic data, such as the fracture strength, elastic modulus and fracture toughness of the composite, which are used as input to the model. Based on the experimental data and the analysis, the interfacial strength is determined for SiC particle-reinforced aluminium matrix composites subjected to different heat treatment processing conditions.  相似文献   

17.
《Composite Interfaces》2013,20(7-9):711-729
The surfaces of kenaf fibers were treated with three different silane coupling agents. 3-glycidoxypropyltrimethoxy silane (GPS), 3-aminopropyltriethoxy silane (APS), and 3-methacryloxypropyltrimethoxy silane (MPS). Among them, the most effective one for the property improvement was GPS when it was applied to the kenaf fiber surfaces at 0.5 wt%. Thermoplastic polypropylene (PP) and thermosetting unsaturated polyester (UPE) matrix composites with chopped kenaf fibers untreated and treated at different GPS concentrations from 0.1 wt% to 5 wt% were fabricated using compression molding technique. The present study demonstrates that the interfacial, flexural, tensile, and dynamic mechanical properties of both kenaf/PP and kenaf/UPE composites importantly depend on the GPS treatments done at different concentrations. The greatest property improvement of both thermoplastic and thermosetting polymer composites was obtained with the silane treatment at 0.5 wt% and the mechanical properties were comparable with E-glass composites prepared the same polymer matrix under the corresponding fiber length and fiber loading. The results also agreed with each other with regard to their interfacial shear strength, flexural properties, tensile properties, storage modulus, with support of fracture surfaces of the composites.  相似文献   

18.
Tetracalcium phosphate (TTCP, Ca4(PO4)2O) was functionalized by poly (l-lactic acid) (PLLA) in order to improve the dispersion of TTCP particles in poly (butylene succinate) (PBS) matrices, and then a series of the PLLA grafted TTCP/PBS (g-TTCP/PBS) composites were prepared via melt processing. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), tensile analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (DTG/TGA) and melt rheological analysis were used to investigate the structure and properties of the g-TTCP/PBS composites. The results revealed that l-lactide could be grafted onto the surface of TTCP, and the g-TTCP/PBS composites showed the best mechanical properties when the content of g-TTCP was 10 wt%. The crystallization temperature of g-TTCP/PBS composites tended to increase with the increase of g-TTCP contents. The functionalized particles played an important role in augmenting the thermal degradation rate and the complex viscosity of the composites due to their unique structure and the reasonable interfacial interaction between the particles and PBS matrix.  相似文献   

19.
《Composite Interfaces》2013,20(4):441-451
The influence of interfacial reaction on interfacial performance of carbon fiber/polyarylacetylene resin composites was studied. For this purpose, vinyltrimethoxysilane containing a double bond was grafted onto the carbon fiber surface to react with the triple bond of polyarylacetylene resin. The reaction between polyarylacetylene resin and vinyltrimethoxysilane was proved by reference to the model reaction between phenylacetylene and vinyltrimethoxysilane. Surface chemical analysis by XPS, surface energy determination from the dynamic contact angle, and the interfacial adhesion in composites was evaluated by interfacial shear strength test as well. It was found that vinyltrimethoxysilane, which can react with polyarylacetylene resin, had been grafted onto the carbon fiber surface. Furthermore, because the reaction between polyarylacetylene resin and vinyltrimethoxysilane took place at the interface, the interfacial adhesion in composites was significantly increased, and the improvement of interfacial adhesion was all attributed to the interfacial reaction.  相似文献   

20.
《Composite Interfaces》2013,20(2-3):111-129
The final properties of composite materials are highly dependent on the residual geometrical parameters (length, diameter, aspect ratio), orientation and distribution of the fibres in the matrix, which in turn are related to the processing conditions. This study analysed the fibre structure variation during the processing of a polypropylene matrix reinforced with cellulose flax pulp for different reinforcement concentrations. The fibre's geometrical parameters, length, diameter and aspect ratio have been measured and their statistical distributions have been assessed for each concentration. Furthermore, the effect of the microstructure variation on the final mechanical properties was analysed. In particular, changes in the interfacial area were evaluated based on the hypothesis that the fibres were cylindrical in shape and considering the average values of the diameters and the lengths calculated using a statistical distribution approach. The fibre interfacial area after the process decreases as the fibre concentration increases and this evaluation explains how the adhesion methods that are used for fibre surface modification fail because of the decrement in the modifier interfacial density. The Halpin–Tsai approach was used to model the experimental data obtained from tensile tests for different composites, so as to confirm the effect of fibre parameters, such as aspect ratio and interfacial area values, in the PP/cellulose blends final properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号