首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
NoSo and NoS pi detection thresholds for a 500-Hz pure-tone signal were measured as a function of masking noise bandwidth in normal-hearing and cochlear hearing-impaired subjects. NoSo and NoS pi critical bands were derived from the bandlimited noise functions. A notched noise measure of the monaural critical band was also obtained for each ear. One hypothesis tested was that an asymmetrical monaural critical band would result in a relatively steep improvement of the NoS pi detection threshold as a function of decreasing masker bandwidth and would, therefore, be associated with a wider binaural critical band. This was hypothesized because the outputs of the left and right auditory filters would be more decorrelated the greater the interaural difference in the monaural critical band. However, as the noise bandwidth was narrowed, the decorrelation would lessen, resulting in a relatively steep improvement in NoS pi detection. Results indicated that the masking level difference (MLD) was smaller and that the monaural critical bands were generally wider in cochlear-impaired listeners. NoSo and NoS pi critical bands were somewhat larger in the cochlear hearing-impaired listeners having relatively wide monaural critical bands. There was a significant correlation between monaural critical band asymmetry and the NoS pi critical band; however, this correlation was insignificant when a control was employed for the critical band in the worse ear. Therefore, the present results did not support a strong association between monaural critical band asymmetry and the width of the NoS pi critical band.  相似文献   

2.
Two experiments were performed to determine the effects of random intensity fluctuation on NoSo and NoS pi performance. Noise was used as both signal and masker, and stimuli were bands of noise from either 0-2.0 or 2.0-4.0kHz. Signal and masker were either coherent (from the same source) or noncoherent (from independent sources). In the first experiment, noise fluctuation was achieved by modulating a wide band of noise. In the second experiment, fluctuation was achieved by narrowing the noise bandwidth. Results from both experiments indicated that NoSo performance was adversely affected by fluctuation and by noncoherent relation between signal and masker. NoS pi detection was not adversely affected by fluctuation at low frequency, and was affected less adversely than was NoSo detection at high frequency. This difference between NoSo and NoS pi performance is an important consideration when making inferences about monaural and binaural processing when the stimuli are fluctuating rather than temporally steady.  相似文献   

3.
Listeners' sensitivity to interaural correlation of the envelope of high-frequency waveforms and whether such sensitivity might account for detectability in a masking-level difference paradigm were assessed. Thresholds of interaural envelope decorrelation (from a reference correlation of 1.0) were measured for bands of noise centered at 4 kHz and bandwidths ranging from 50-1600 Hz. Decorrelation of the envelope was achieved by "mixing" two independent narrow-band noises. Separately, with the same listeners, NoSo and NoS pi detection thresholds were measured for maskers of the same center frequency and bandwidths. For bandwidths of noise up to about 400 Hz, listeners were similarly sensitive to interaural decorrelation in both types of task. However, for bandwidths greater than 400 Hz or so, while sensitivity in the discrimination task was unaffected, sensitivity was reduced in the NoS pi conditions. Additional data suggested that listeners were able to maintain their sensitivity independent of bandwidth in the discrimination task by focusing on binaural information within select spectral regions of the stimuli.  相似文献   

4.
A two-interval, two-alternative temporal forced-choice procedure was used to measure NoSo and NoS pi masked thresholds with 500-Hz and 4-kHz tonal signals. The duration of the signal was either 10, 20, 40, or 320 ms. The maskers were 200-Hz-wide bands of Gaussian noise centered at the frequency of the signal and presented continuously. Decreasing the duration of the 500-Hz tonal signal resulted in a modest increase (1.5 dB or so) in the masking-level difference (MLD) measured between NoSo and NoS pi conditions. In contrast, decreasing the duration of the 4-kHz tonal signal resulted in a substantial decrease (4.5 dB or so) in the MLD. Comparisons of the data with thresholds predicted from analyses based on "windows of temporal integration" provided quantitatively acceptable accounts of the data. The data obtained in the NoS pi condition at 4 kHz, which are novel and were of primary interest, were well-accounted for in a statistical sense. However, there were small, but systematic, discrepancies between the predictions and the data. Those discrepancies, although small in magnitude, suggest that binaural temporal integration at high frequencies, where the envelopes of the stimuli convey the information, may be inherently different from both monaural temporal integration and binaural temporal integration at low frequencies.  相似文献   

5.
This study was designed to investigate the effects of masker level and frequency on binaural detection and interaural time discrimination. Detection and interaural time discrimination of a 700-Hz sinusoidal signal were measured as a function of the center frequency and level of a narrow-band masking noise. The masker was a continuous, diotic, 80-Hz-wide noise that varied in center frequency from 250 to 1370 Hz. In the detection experiment, the signal was presented either diotically (NoSo) or interaurally phase reversed (NoS pi). In the interaural time discrimination experiment, the signal level needed to discriminate a 30-microseconds interaural delay was measured. As would be expected, the presence of the masker has a greater effect on NoSo detection than NoS pi detection, and for masker frequencies at or near the signal frequency. In contrast, interaural time discrimination can be improved by the presence of a low-level masker. Also, performance improves more rapidly as the signal/masker frequency separation increases for NoSo detection than for interaural time discrimination and NoS pi detection. For all three tasks, significant upward spread of masking occurs only at the highest masker level; at low masker levels, there is a tendency toward downward spread of masking.  相似文献   

6.
Binaural performance was measured as a function of stimulus frequency for four impaired listeners, each with bilaterally symmetric audiograms. The subjects had various degrees and configurations of audiometric losses: two had high-frequency, sensorineural losses; one had a flat sensorineural loss; and one had multiple sclerosis with normal audiometric thresholds. Just noticeable differences (jnd's) in interaural time, interaural intensity, and interaural correlation as well as detection thresholds for NoSo and NoS pi conditions were obtained for narrow-band noise stimuli at octave frequencies from 250-4000 Hz. Performance of the impaired listeners was generally poorer than that of normal-hearing listeners, although it was comparable to normal in a few instances. The patterns of binaural performance showed no apparent relation to the audiometric patterns; even the two subjects with similar degree and configuration of hearing loss have very different binaural performance, both in the level and frequency dependence of their performance. The frequency dependence of performance on individual tests is irregular enough that one cannot confidently interpolate between octaves. In addition, it appears that no subset of the measurements is adequate to characterize the performance in the rest of the measurements with the exception that, within limits, interaural correlation discrimination and NoS pi detection performance are related.  相似文献   

7.
A set of ten digitized statistically similar Gaussian maskers was used in one-internal tone-in-noise detection experiments under diotic (NoSo) and dichotic (NoS pi) interaural conditions. Stimulus/response matrices were generated for each masker in the presence or absence of a target 500-Hz tone. For both NoSo and NoS pi, nonparametric analyses show that response probabilities and sensitivities vary significantly across noise waveforms, indicating a considerable external noise component in subject response variability. A parametric model is developed that maps individual stimulus waveforms onto a decision axis, facilitating evaluation of internal/external noise variance ratios. For both NoSo and NoS pi, internal and external noise variance are of similar magnitude.  相似文献   

8.
Although the speech transmission index (STI) is a well-accepted and standardized method for objective prediction of speech intelligibility in a wide range of environments and applications, it is essentially a monaural model. Advantages of binaural hearing in speech intelligibility are disregarded. In specific conditions, this leads to considerable mismatches between subjective intelligibility and the STI. A binaural version of the STI was developed based on interaural cross correlograms, which shows a considerably improved correspondence with subjective intelligibility in dichotic listening conditions. The new binaural STI is designed to be a relatively simple model, which adds only few parameters to the original standardized STI and changes none of the existing model parameters. For monaural conditions, the outcome is identical to the standardized STI. The new model was validated on a set of 39 dichotic listening conditions, featuring anechoic, classroom, listening room, and strongly echoic environments. For these 39 conditions, speech intelligibility [consonant-vowel-consonant (CVC) word score] and binaural STI were measured. On the basis of these conditions, the relation between binaural STI and CVC word scores closely matches the STI reference curve (standardized relation between STI and CVC word score) for monaural listening. A better-ear STI appears to perform quite well in relation to the binaural STI model; the monaural STI performs poorly in these cases.  相似文献   

9.
The binaural system is well-known for its sluggish response to changes in the interaural parameters to which it is sensitive. Theories of binaural unmasking have suggested that detection of signals in noise is mediated by detection of differences in interaural correlation. If these theories are correct, improvements in the intelligibility of speech in favorable binaural conditions is most likely mediated by spectro-temporal variations in interaural correlation of the stimulus which mirror the spectro-temporal amplitude modulations of the speech. However, binaural sluggishness should limit the temporal resolution of the representation of speech recovered by this means. The present study tested this prediction in two ways. First, listeners' masked discrimination thresholds for ascending vs descending pure-tone arpeggios were measured as a function of rate of frequency change in the NoSo and NoSpi binaural configurations. Three-tone arpeggios were presented repeatedly and continuously for 1.6 s, masked by a 1.6-s burst of noise. In a two-interval task, listeners determined the interval in which the arpeggios were ascending. The results showed a binaural advantage of 12-14 dB for NoSpi at 3.3 arpeggios per s (arp/s), which reduced to 3-5 dB at 10.4 arp/s. This outcome confirmed that the discrimination of spectro-temporal patterns in noise is susceptible to the effects of binaural sluggishness. Second, listeners' masked speech-reception thresholds were measured in speech-shaped noise using speech which was 1, 1.5, and 2 times the original articulation rate. The articulation rate was increased using a phase-vocoder technique which increased all the modulation frequencies in the speech without altering its pitch. Speech-reception thresholds were, on average, 5.2 dB lower for the NoSpi than for the NoSo configuration, at the original articulation rate. This binaural masking release was reduced to 2.8 dB when the articulation rate was doubled, but the most notable effect was a 6-8 dB increase in thresholds with articulation rate for both configurations. These results suggest that higher modulation frequencies in masked signals cannot be temporally resolved by the binaural system, but that the useful modulation frequencies in speech are sufficiently low (<5 Hz) that they are invulnerable to the effects of binaural sluggishness, even at elevated articulation rates.  相似文献   

10.
In the present study detection under diotic (NoSo) and dichotic (NoS pi) listening conditions in a forward masking paradigm was investigated. Both the level of a noise masker and the temporal separation between the masker and a 250-Hz tone burst served as independent variables. Results showed that most of the variance in the data could be accounted for by the amount of masking in the NoSo condition, independent of the value of the temporal parameter, which itself accounted for only 1.4% of the variance that remained. Once the data were corrected for NoSo masking effectiveness, the MLD was found to decrease by only 1.4 dB as temporal separation increased from 5-100 ms, which is consistent with a very long time constant for the binaural system. Consistent with this finding, it was shown that slope changes of the growth of masking functions, for simultaneous as compared to forward masking, were similar for both the NoSo and NoS pi conditions.  相似文献   

11.
Three experiments investigated the roles of interaural correlation (rho) and of the monaural power spectrum in the detection and discrimination of narrow-band-noise signals (462-539 Hz) in broadband maskers (0-3 kHz). The power and rho of the target band were independently controlled, while the flanking noise was fixed and diotic. Experiments 1 and 2 involved rho and power values that would be produced by specific values of signal-to-noise ratio (SNR) in the NoSpi binaural configuration. Listeners were required to discriminate different SNRs via a 2I-FC loudness-discrimination task. At low reference SNRs, changes in rho fully accounted for listeners' performance, but as reference SNR increased, additional energy in the target band played an increasing role. Experiment 2 showed that at these higher SNRs the combination of information from the power spectrum and rho was superadditive and could not be explained by simple signal-detection models. The equalization-cancellation (EC) theory would explain these data using the output from interaural cancellation, Y, rather than rho. Experiment 3 attempted to foil binaural processing, by fixing either rho or Y across intervals. Consistent with EC theory, when Y was fixed, the contribution of the binaural system appeared negligible, while fixing rho did not have this effect.  相似文献   

12.
Influence of monaural spectral cues on binaural localization   总被引:2,自引:0,他引:2  
Seven subjects located, monaurally and binaurally, narrow bands of noise originating in the horizontal plane. The stimuli were 1.0 kHz wide and centered at 4.0-14.0 kHz in steps of 0.5 kHz. The loudspeakers, 15 deg apart, were arranged in a semicircle (0-270-180 deg, azimuth). In the first part of the experiment all sounds emanated from the loudspeaker at 270 deg, but their apparent locations varied widely as a function of their center frequency. For each subject, the pattern of location judgments under the binaural listening condition corresponded to that recorded for the monaural condition. In the second part of the experiment the loudspeaker from which each of the same narrow bands of noise emanated was varied in irregular order. Again, monaural location judgments were governed by the frequency content of the noise bands. Binaural location judgments were strongly influenced by the sounds' frequency composition when the stimuli originated from 315-225 deg, notwithstanding the presence of interaural differences in time and intensity. For narrow bands of noise emanating off midline, monaural spectral cues significantly override binaural difference cues, and they also determine the resolution of front-back ambiguities.  相似文献   

13.
Performance in several binaural-interaction experiments   总被引:1,自引:0,他引:1  
The relationship between interaural correlation discrimination and binaural detection was investigated using common experimental procedures and common subjects. Psychometric functions were obtained for four normal-hearing subjects at 500 and 4000 Hz using third-octave noise signals for the correlation discrimination experiment, and pure-tone signals and third-octave noise maskers for the detection experiment. Results from these two measurements, which were compared by expressing the signal-to-noise ratio as an equivalent change in interaural correlation, support the idea that interaural correlation discrimination and binaural detection are closely related. Since large intersubject differences in binaural performance were observed in these experiments, interaural-time, interaural-intensity, and monaural-intensity discrimination were measured in a second experiment. The results of the second experiment show large intersubject differences for the interaural tasks, but not for the monaural task.  相似文献   

14.
Although many studies have shown that intelligibility improves when a speech signal and an interfering sound source are spatially separated in azimuth, little is known about the effect that spatial separation in distance has on the perception of competing sound sources near the head. In this experiment, head-related transfer functions (HRTFs) were used to process stimuli in order to simulate a target talker and a masking sound located at different distances along the listener's interaural axis. One of the signals was always presented at a distance of 1 m, and the other signal was presented 1 m, 25 cm, or 12 cm from the center of the listener's head. The results show that distance separation has very different effects on speech segregation for different types of maskers. When speech-shaped noise was used as the masker, most of the intelligibility advantages of spatial separation could be accounted for by spectral differences in the target and masking signals at the ear with the higher signal-to-noise ratio (SNR). When a same-sex talker was used as the masker, the intelligibility advantages of spatial separation in distance were dominated by binaural effects that produced the same performance improvements as a 4-5-dB increase in the SNR of a diotic stimulus. These results suggest that distance-dependent changes in the interaural difference cues of nearby sources play a much larger role in the reduction of the informational masking produced by an interfering speech signal than in the reduction of the energetic masking produced by an interfering noise source.  相似文献   

15.
Binaural speech intelligibility in noise for hearing-impaired listeners   总被引:2,自引:0,他引:2  
The effect of head-induced interaural time delay (ITD) and interaural level differences (ILD) on binaural speech intelligibility in noise was studied for listeners with symmetrical and asymmetrical sensorineural hearing losses. The material, recorded with a KEMAR manikin in an anechoic room, consisted of speech, presented from the front (0 degree), and noise, presented at azimuths of 0 degree, 30 degrees, and 90 degrees. Derived noise signals, containing either only ITD or only ILD, were generated using a computer. For both groups of subjects, speech-reception thresholds (SRT) for sentences in noise were determined as a function of: (1) noise azimuth, (2) binaural cue, and (3) an interaural difference in overall presentation level, simulating the effect of a monaural hearing acid. Comparison of the mean results with corresponding data obtained previously from normal-hearing listeners shows that the hearing impaired have a 2.5 dB higher SRT in noise when both speech and noise are presented from the front, and 2.6-5.1 dB less binaural gain when the noise azimuth is changed from 0 degree to 90 degrees. The gain due to ILD varies among the hearing-impaired listeners between 0 dB and normal values of 7 dB or more. It depends on the high-frequency hearing loss at the side presented with the most favorable signal-to-noise (S/N) ratio. The gain due to ITD is nearly normal for the symmetrically impaired (4.2 dB, compared with 4.7 dB for the normal hearing), but only 2.5 dB in the case of asymmetrical impairment. When ITD is introduced in noise already containing ILD, the resulting gain is 2-2.5 dB for all groups. The only marked effect of the interaural difference in overall presentation level is a reduction of the gain due to ILD when the level at the ear with the better S/N ratio is decreased. This implies that an optimal monaural hearing aid (with a moderate gain) will hardly interfere with unmasking through ITD, while it may increase the gain due to ILD by preventing or diminishing threshold effects.  相似文献   

16.
Detection of tones in reproducible narrow-band noise   总被引:2,自引:0,他引:2  
Hit and false-alarm rates were measured for detection of a 500-Hz tone target in each of ten reproducible samples of 1/3-oct bandwidth noise centered at 500 Hz for both NoS pi and NoSo conditions. The effects on hit rates of the starting phase of the target relative to individual noise samples were investigated with two target phase angles for three subjects. The major results are: (1) performance varies significantly over masker waveforms; (2) for NoS pi conditions, the effect of target-to-marker phase angle on hit rates is not significant for these narrow-band maskers; (3) for NoSo conditions, the target-to-masker phase angle has a large effect; (4) no significant correlation between NoSo performance and NoS pi performance is seen across masker waveforms. These results are generally consistent wuth previously reported results for wideband maskers [R.H. Gilkey, D.E. Robinson, and T.E. Hanna, "Effects of masker waveform and signal-to-masker phase relation on diotic and dichotic masking by reproducible noise," J. Acoust. Soc. Am. 78, 1207-1219 (1985)] with an important exception. Specifically, in the wideband experiment, significant correlation between NoSo and NoS pi performance across noise samples was found. In addition, in the wideband experiment, a small yet statistically significant effect of target-to-masker phase was observed in the NoS pi condition.  相似文献   

17.
Several investigations suggest that sensitivity to changes in interaural disparities within select spectral regions may be degraded by the presence of energy at other, even remote, spectral regions. This study assessed whether similar degradations would be observed in an MLD paradigm. Detection thresholds were measured for NoSo and NoS pi. The signal, an 800-Hz tone (100-ms), was presented in continuous, broadband noise. Thresholds were also measured in the presence of a 400-Hz tone (the interferer) presented with an interaural phase disparity of 180 degrees and gated simultaneously with the signal or presented continuously. NoS pi thresholds increased by about 7 dB with the gated interferer at 80 dB SPL. Smaller increases were observed with lower levels of the interferer. Presenting the interferer continuously reduced substantially its effect. NoSo thresholds were affected only slightly by the interferer. Reversing the roles of the signal and interferer (400-Hz signal, 800-Hz interferer) led to smaller, but reliable degradations in performance. Diotic interferers had, in general, smaller effects on performance. The possible relation between the mechanisms that produce interference and those that foster an ability to segregate sources of sound is discussed.  相似文献   

18.
Speech reception thresholds were measured in virtual rooms to investigate the influence of reverberation on speech intelligibility for spatially separated targets and interferers. The measurements were realized under headphones, using target sentences and noise or two-voice interferers. The room simulation allowed variation of the absorption coefficient of the room surfaces independently for target and interferer. The direct-to-reverberant ratio and interaural coherence of sources were also varied independently by considering binaural and diotic listening. The main effect of reverberation on the interferer was binaural and mediated by the coherence, in agreement with binaural unmasking theories. It appeared at lower reverberation levels than the effect of reverberation on the target, which was mainly monaural and associated with the direct-to-reverberant ratio, and could be explained by the loss of amplitude modulation in the reverberant speech signals. This effect was slightly smaller when listening binaurally. Reverberation might also be responsible for a disruption of the mechanism by which the auditory system exploits fundamental frequency differences to segregate competing voices, and a disruption of the "listening in the gaps" associated with speech interferers. These disruptions may explain an interaction observed between the effects of reverberation on the targets and two-voice interferers.  相似文献   

19.
The intelligibility of speech is sustained at lower signal-to-noise ratios when the speech has a different interaural configuration from the noise. This paper argues that the advantage arises in part because listeners combine evidence of the spectrum of speech in the across-frequency profile of interaural decorrelation with evidence in the across-frequency profile of intensity. To support the argument, three experiments examined the ability of listeners to integrate and segregate evidence of vowel formants in these two profiles. In experiment 1, listeners achieved accurate identification of the members of a small set of vowels whose first formant was defined by a peak in one profile and whose second formant was defined by a peak in the other profile. This result demonstrates that integration is possible. Experiment 2 demonstrated that integration is not mandatory, insofar as listeners could report the identity of a vowel defined entirely in one profile despite the presence of a competing vowel in the other profile. The presence of the competing vowel reduced accuracy of identification, however, showing that segregation was incomplete. Experiment 3 demonstrated that segregation of the binaural vowel, in particular, can be increased by the introduction of an onset asynchrony between the competing vowels. The results of experiments 2 and 3 show that the intrinsic cues for segregation of the profiles are relatively weak. Overall, the results are compatible with the argument that listeners can integrate evidence of spectral peaks from the two profiles.  相似文献   

20.
为了给双耳听力设备佩戴者带来更好的语音可懂度,提出了一种利用双耳时间差与声级差的近场语音增强算法,该方法首先利用这两种差异来估计语音的功率谱和语音的相干函数,然后计算干扰噪声在左右耳间的头相关传输函数的比值,最后构造两个维纳滤波器。客观评价的参数显示该算法去噪效果优于对比算法而目标语音的时间差误差和声级差误差低于对比算法。主观的言语接受阈测试表明该方法能有效提高语音可懂度。结果表明,该算法在能够有效去除干扰噪声的同时,保留了目标语音的空间信息。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号