首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction between 3-((1R,2R)-2-{[1-(3,5-di-tert-butyl-2-hydroxy-phenyl)-meth-(E)-ylidene]-amino}-cyclohexyl)-1-isopropyl-4-phenyl-3H-imidazol-1-ium bromide (1a) or the derivative 3-((1R,2R)-2-{[1-(2-hydroxy-5-nitro-phenyl)-meth-(E)-ylidene]-amino}-cyclohexyl)-1-isopropyl-4-phenyl-3H-imidazol-1-ium bromide (1b) and metal halides MClx.yTHF (M = Zr, x = 4, y = 2; M = V, x = y = 3; M = Cr, x = y = 3), in THF, at −78 °C gives the metal complexes of general formula [MClx2-N,O-OC6H2R1R2C(H)N-C6H10-Im)2][Br]2 (where M = Zr, x = 2, R1 = R2 = tBu, 2; M = Zr, x = 2, R1 = H, R2 = NO2, 3; M = V, x = 1, R1 = R2 = tBu, 4; M = Cr, x = 1, R1 = R2 = tBu, 5; M = Fe, x = 0, R1 = R2 = tBu, 6; Im = 1-isopropyl-4-phenyl-3H-imidazol-1-ium-3-yl). 1H and 13C NMR spectroscopy of 2 and 3 indicate κ2-N,O-ligand coordination via the phenoxy-imine moiety with pendant imidazolium salt that is corroborated by a single crystal structure of 6. Compounds 2, 3, 4 and 5 were tested as precatalysts for ethylene polymerisation in the presence of methylaluminoxane (MAO) cocatalyst, showing low activity. Selected polymer samples were characterised by GPC showing multimodal molecular weight distributions.  相似文献   

2.
3.
Pyridylimine ligands of general formula CS-{O-4-(2,5-C6H2R2)-NCH-2-Py}n, where CS is a trimethylsilyl group (n = 1, R = H, Ia or Me, Ib) or a carbosilane dendritic framework (IIa,b, n = 4; IIIa, n = 8), have been coordinated to platinum(II) and molybdenum(0) centers to give the mononuclear [(Ia,b){PtCl2}], tetranuclear [(IIb){PtCl2}4] and [(IIa){Mo(CO)3(MeCN)}4], and octanuclear [(IIIa){Mo(CO)3(MeCN)}8] complexes. The poor solubility of the polymetallic platinum compounds impedes the preparation of higher-generation dendrimers, although such a limitation is not found in the case of the more soluble molybdenum dendrimers.  相似文献   

4.
The new double Schiff-base ligands H6ipa-hyhb and H6ipa-hyhh were synthesized by condensation of a 4,6-diformylresorcinol derivative (ipa) with 4-hydroxy-butanoic acid hydrazide (hyhb) and 6-hydroxy-hexanoic acid hydrazide (hyhh). The reaction with copper(II) perchlorate in the presence of an appropriate co-ligand (Him = imidazole, Hpz = pyrazole) leads to the novel coordination polymers {[Cu2(H4ipa-hyhb)(Hpz)2](ClO4)2}n (1), {[Cu2(H4ipa-hyhb)(Him)2](ClO4)2}n (2), and {[Cu2-(H4ipa-hyhh)(Hpz)2](ClO4)2}n (3). These coordination polymers are composed of primary building blocks with the general formula [Cu2(H4ipa-X)(L)2]2+ (X = hyhb, hyhh; L = Him, Hpz) which are linked by coordination of the hydroxyl groups of the ligand side chains at the apical position of copper(II) centers of adjacent building blocks. The resulting chains possess different topologies and therefore different supramolecular structures due to the variation in length of the ligand alkyl side chains. For the complexes 1 and 2 double hydroxyalkyl-bridged distorted ladder like chains are formed. Whereas in case of complex 3 single hydroxyalkyl-bridged chains are obtained which assemble to hydrogen bonded double chains. In the case of 1 and 2 these chains are cross-linked by hydrogen bonding interactions with the perchlorate counterions, whereas for 3 additional π–π stacking interaction are observed. The temperature-dependent magnetic measurements indicate weak antiferromagnetic interactions with coupling constants J = −26.1 cm−1 (1), J = −28.2 cm−1 (2), and J = −26.5 cm−1 (3). The magnetic exchange interaction is solely the result of a coupling within the dinuclear complex moieties through the central resorcinol moiety.  相似文献   

5.
The reaction of Ni(OAc)2, NiX2 (X = Cl, Br) or CoCl2 with the proligand 2-amino-2-methyl-1,3-propanediol (ampdH2) affords a new family of tetranuclear complexes. The syntheses of [Ni4(OAc)4(ampdH)4] (1) and [M4X4(ampdH)4] (M = Ni, X = Cl, 2; M = Ni, X = Br, 3; M = Co, X = Cl, 4) are reported, together with the single crystal X-ray structures of 1, 2 and 4 and the magnetochemical characterization of 1, 3 and 4. Each member of this family of complexes displays a low symmetry structure that incorporates a {M4O4} core unit based on a distorted cubane. Magnetic measurements reveal ferromagnetic exchange interactions for 1, 3 and 4. These give rise to S = 4 ground state spins for the tetranuclear Ni complexes and an anisotropic effective S′ = 2 ground state for the Co complex.  相似文献   

6.
Rhenium(I) tricarbonyl complexes with bispyridine ligands bearing sulfur-rich pendant, Re(CO)3(Medpydt)X (Medpydt = dimethyl 2-(di(2-pyridyl)methylene)-1,3-dithiole-4,5-dicarboxylate; X = Cl, 1; X = Br, 2) and Re(CO)3(MebpyTTF)X (MebpyTTF = 4,5-bis(methyloxycabonyl)-4′,5′-(4′-methyl-2,2′-dipyrid-4-ylethylenedithio)-tetrathiafulvalene; X = Cl, 5; X = Br, 6), were prepared from the reactions between Re(CO)5X (X = Cl, Br) and Medpydt or MebpyTTF, respectively. Hydrolysis of the above complexes afforded the analogues with carboxylate derivatives, Re(CO)3(H2dpydt)X (X = Cl, 3; X = Br, 4) and Re(CO)3(H2bpyTTF)X (X = Cl, 7; X = Br, 8). The crystal structures for complexes 1 · 2H2O, 5 and 6 were determined using X-ray single crystal diffraction. UV-Vis absorption spectra of the rhenium complexes show the intraligand and MLCT transitions. Electrochemical behaviors of all new compounds were studied with cyclic voltammetry. Upon irradiation, complexes 3-6 exhibit blue to red emissions in fluid solutions at the room temperature. The performance of complexes 3, 4, 7 and 8 as photosensitizers for anatase TiO2 solar cells was preliminarily investigated as well.  相似文献   

7.
Four new coordination polymers were obtained by employing polycarboxylato spacers and cationic copper(II) complexes as nodes: 2[Cu3(trim)2(NH3)6(H2O)3] (1); 1[Cu(tmen)(dhtp)] (2), 1[Cu(tmen)(hitp)(H2O)] (3), 1[Cu(tmen)(nitp)] (4). (H3trim = trimesic acid, H2dhtp = 2,5-dihydroxy-terephthalic acid; H2hitp = 5-hydroxy-isophthalic acid, H2nitp = 5-nitro-isophthalic acid; tmen = N,N,N′,N′-tetramethyl-ethylenediamine). The crystal structures of the four compounds have been solved. Compound 1 consists of 2D coordination polymers with heart-shaped meshes, while compounds 24 contain infinite zigzag chains. The role of the hydrogen bond interactions in sustaining the supramolecular solid-state architectures in compounds 1 and 3 is discussed. The cryomagnetic investigation of compounds 1, 2, and 4 reveals antiferromagnetic interactions between the copper ions.  相似文献   

8.
We report a combined experimental and computational study of new rhenium tricarbonyl complexes based on the bidentate heterocyclic N-N ligands 2-(4-methylpyridin-2-yl)benzo[d]-X-azole (X = N-CH3, O, or S) and 2-(benzo[d]-X-azol-2-yl)-4-methylquinoline (X = N-CH3, O, or S). Two sets of complexes are reported. Chloro complexes, described by the general formula Re(CO)3[2-(4-methylpyridin-2-yl)benzo[d]-X-azole]Cl (X = N-CH3, 1; X = O, 2; X = S, 3) and Re(CO)3[2-(benzo[d]-X-azol-2-yl)-4-methylquinoline]Cl (X = N-CH3, 4; X = O, 5; X = S, 6) were synthesized heating at reflux Re(CO)5Cl with the appropriate N-N ligand in toluene. The corresponding pyridine set {Re(CO)3[2-(4-methylpyridin-2-yl)benzo-X-azole]py}PF6 (X = N-CH3, 7; X = O, 8; X = S, 9) and {Re(CO)3[2-(benzo[d]-X-azol-2-yl)-4-methylquinoline]py}PF6 (X = N-CH3, 10; X = O, 11; X = S, 12) was synthesized by halide abstraction with silver nitrate of 1-6 followed by heating in pyridine and isolated as their hexafluorophosphate salts. All complexes have been fully characterized by IR, NMR, electrochemical techniques and luminescence. The crystal structures of 1 and 7 were obtained by X-ray diffraction. DFT and time-dependent (TD) DFT calculations were carried out for investigating the effect of the organic ligand on the optical properties and electronic structure of the reported complexes.  相似文献   

9.
A series of new hydroxyindanimine ligands [ArNCC2H3(CH3)C6H2(R)OH] (Ar = 2,6-i-Pr2C6H3, R = H (HL1), R = Cl (HL2), and R = Me (HL3)) were synthesized and characterized. Reaction of hydroxyindanimine with Cu(OAc)2 · H2O results in the formation of the mononuclear bis(hydroxyindaniminato)copper(II) complexes Cu[ArNCC2H3(CH3)C6H2(R)O]2 (Ar = 2,6-i-Pr2C6H3, R = H (1), R = Cl (2), and R = Me (3)). The complex 2′ was obtained from the chlorobenzene solution of the complex 2, which has the same molecule formula with the complex 2 but it is a polymorph. All copper(II) complexes were characterized by their IR and elemental analyses. In addition, X-ray structure analyses were performed for complexes 1, 2, and 2′. After being activated with methylaluminoxane (MAO), complexes 1-3 can be used as catalysts for the vinyl polymerization of norbornene with moderate catalytic activities. Catalytic activities and the molecular weight of polynorbornene have been investigated for various reaction conditions.  相似文献   

10.
A series of 2,6-bis(imino)pyridyl iron(II) and cobalt(II) complexes [2,6-(ArNCMe)2C5H3N]MCl2 (Ar = 2,6-i-Pr2C6H3, M = Fe: 3a, M = Co: 4a; Ar = 2,4,6-i-Pr3C6H2, M = Fe: 3b, M = Co: 4b; Ar = 2,6-i-Pr2-4-BrC6H2, M = Fe: 3c, M = Co: 4c; Ar = 2,4-i-Pr2-6-BrC6H2, M = Fe: 3d, M = Co: 4d) has been synthesized, characterized, and investigated as precatalysts for the polymerization of ethylene in the presence of modified methylaluminoxane (MMAO). The substituents of pyridinebisimine ligands and their positions located significantly influence catalyst activity and polymer property. It is found that the catalytic activities of the iron complexes/MMAO systems are mainly dominated by electronical effect, while those of the cobalt complexes/MMAO systems are primarily controlled by hindering effect.  相似文献   

11.
Monomeric tellurides 4-RC6H4(SB)Te [SB = 2-(4,4′-NO2C6H4CHNC6H3-Me); R = H, 1a; Me, 1b; OMe, 1c], which incidentally represent the first example of a telluride with 1,4-Te?N intramolecular interaction, have been prepared and characterized by solution and solid-state 125Te NMR, 13C NMR and X-ray crystallography. Interplay of weak C-H?O and C-H?π interactions in the crystal lattice of 1b and 1c are responsible for the formation of supramolecular motifs. These tellurides undergo expected oxidative addition reactions with halogens and interhalogens and also interact coordinatively with mercury(II) halides to give 1:2 complexes, HgX2[4-RC6H4(SB)Te]2 (X = Cl, R = H, 2a; Me, 2b; OMe, 2c and X = Br, R = H, 3a; Me, 3b; and OMe, 3c) with no sign of Te-C bond cleavage, as has been reported for some 1,5-Te?N(O) intramolecularly bonded tellurides. The complexes 2a and 3c are the first structurally characterized monomeric 1:2 adducts of mercury(II) halides with Te ligands. The 1,4-Te?N intramolecular interactions in the solid-state are retained in the complexes highlighting simultaneously the Lewis acid and base character of the Te(II) atom. Packing of molecules in the crystal lattice of 2a and 3c reveals that non-covalent C-H?Cl/Br interactions involving metal-bound halogen atoms possess significant directionality and in combination with coordinative covalent interactions may be of potential use in creating inorganic supramolecular synthons.  相似文献   

12.
2-(N-aryliminomethyl)pyrrole precursors (2,6-R2-C6H3-NCH-2-C4H3NH) (R = Me, IH; R = iPr, IIH) were prepared and transformed into their corresponding sodium salts (Na+I and Na+II) by treatment with NaH. Both salts readily react with [NiBr2(DME)] (DME = 1,2-dimethoxyethane) to give the respective bis{2-(N-arylimino-κN-methyl)pyrrolide-κN}nickel(II) complexes (1, 2) in almost quantitative yields. The oxidative addition of IH to [Ni(COD)2] (COD = 1,5-cyclooctadiene) results in the formation of 3, which is a mono(iminomethylpyrrolide)-η3-(cyclic-allyl)-type organonickel(II) complex. The crystal structure of compound 1 has been established by X-ray diffraction studies.  相似文献   

13.
Based on two β-enaminoketonato ligands [ArNC(CH3)C(H)C(CF3)OH] (L1, Ar = 2,6-Me2C6H3; L2, Ar = 2,6-i-Pr2C6H3), their mono(β-enaminoketonato)nickel (II) complexes [(ArNC(CH3)C(H)C(CF3)O)Ni(Ph)(PPh3)] (1, Ar = 2,6-Me2C6H3; 3, Ar = 2,6-i-Pr2C6H3) and bis(β-enaminoketonato)nickel (II) complexes [(ArNC(CH3)C(H)C(CF3)O)2Ni] (2, Ar = 2,6-Me2C6H3; 4, Ar = 2,6-i-Pr2C6H3) have been synthesized and characterized. The molecular structures of complex 1, 2 and 4 have been confirmed by single-crystal X-ray analyses. After being activated with methylaluminoxane (MAO) these catalytic precursors 1-4 could polymerize norbornene to afford addition-type polynorbornene (PNB). Interestingly, catalytic activities and PNB productivity were greatly enhanced due to the introduction of strong electron-withdrawing group - trifluoro methyl into the ligands. Catalytic activities, polymer yield, Mw and Mw/Mn of PNB have been investigated under various reaction conditions.  相似文献   

14.
The ortho-metallated complexes [Pd22(C,C)-C6H4(PPh2CHC(O)C6H5R}2(μ-Cl)2] (R = Ph (1a), NO2 (1b), Br (1c)) were prepared by refluxing equimolar mixtures of Ph3PCHC(O)C6H5R, (R = Ph, NO2, Br) and Pd(OAc)2 in MeOH, followed by an excess of NaCl. The dinuclear complexes (1a-1c) react with silver trifluoromethylsulfonate and bidentate ligands [L = bipy (2,2′-bipyridine), phen (phenanthroline), dppe (bis(diphenylphosphino)ethane), dppp (bis(diphenylphosphino)propane)] giving the mononuclear stabilized orthopalladated complexes in endo position [Pd{κ2(C,C)-C6H4(PPh2CHC(O)R}L](OTf) [R = Ph, L = phen (2a), bipy (3a), dppe (4a), dppp (5a); R = NO2, L = phen (2b), bipy (3b), dppe (4b), dppp (5b); R = Br, L = phen (2c), bipy (3c), dppe (4c), dppp (5c); OTf = trifluoromethylsulfonate anion]. Orthometalation and ylidic C-coordination are demonstrated by an X-ray diffraction study of 2c and 3c. In the structures, the palladium atom shows a slightly distorted square-planar coordination geometry.  相似文献   

15.
Two types of Pd-complexes containing the new N,N′-ligands 2-[3-(4-alkyloxyphenyl)pyrazol-1-yl]pyridine (pzRpy; R = C6H4OCnH2n+1, n = 6 (hp), 10 (dp), 12 (ddp), 14 (tdp), 16 (hdp), 18 (odp)) (1-6), namely c-[Pd(Cl)2(pzRpy)] (7-10) and c-[Pd(η3-C3H5)(pzRpy)]BF4 (11-16), have been synthesised and characterised by different spectroscopic techniques. Those members of the second type containing the largest chains (R = ddp 13, tdp 14, hdp 15, odp 16) have been found to have liquid crystal properties showing smectic A mesophases. By contrast, neither the free ligands pzRpy nor their related c-[Pd(Cl)2(pzRpy)] complexes exhibited mesomorphism. The new synthesised metallomesogens are mononuclear complexes with an unsymmetrical molecular shape as deduced from the X-ray structures of c-[Pd(η3-C3H5)(pzRpy)]BF4 (R = hp, 11; dp, 12). Both compounds, which are isostructural, show a distorted square-planar environment on the palladium centres defined by the allyl and the bidentate pzRpy ligands. The crystal structure reveals that both the counteranion and the pzRpy ligand function as a source of hydrogen-bonding and intermolecular π?π contacts resulting in a 2D supramolecular assembly.  相似文献   

16.
A series of new asymmetrically N-substituted derivatives of the 1,4,7-triazacyclononane (tacn) macrocycle have been prepared from the common precursor 1,4,7-triazatricyclo[5.2.1.04,10]decane: 1-ethyl-4-isopropyl-1,4,7-triazacyclononane (L1), 1-isopropyl-4-propyl-1,4,7-triazacyclononane (L2), 1-(3-aminopropyl)-4-benzyl-7-isopropyl-1,4,7-triazacyclononane (L3), 1-benzyl-4-isopropyl-1,4,7-triazacyclononane (L4) and 1,4-bis(3-aminopropyl)-7-isopropyl-1,4,7-triazacyclononane (L5). The corresponding monomeric copper(II) complexes were synthesised and were found to be of composition: [Cu(L1)Cl2] · 1/2 H2O (C1), [Cu(L4)Cl2] · 4H2O (C2), [Cu(L3)(MeCN)](ClO4)2 (C3), [Cu(L5)](ClO4)2 · MeCN · NaClO4 (C4) and [Cu(L2)Cl2] · 1/2 H2O (C5). The X-ray crystal structures of each complex revealed a distorted square-pyramidal copper(II) geometry, with the nitrogen donors on the ligands occupying 3 (C1 and C2), 4 (C3) or 5 (C4) coordination sites on the Cu(II) centre. The metal complexes were tested for the ability to hydrolytically cleave phosphate esters at near physiological conditions, using the model phosphodiester, bis(p-nitrophenyl)phosphate (BNPP). The observed rate constants for BNPP cleavage followed the order kC1 ≈ kC2 > kC5 ? kC3 > kC4, confirming that tacn-type Cu(II) complexes efficiently accelerate phosphate ester hydrolysis by being able to bind phosphate esters and also form the nucleophile necessary to carry out intramolecular cleavage. Complexes C1 and C2, featuring asymmetrically disubstituted ligands, exhibited rate constants of the same order of magnitude as those reported for the Cu(II) complexes of symmetrically tri-N-alkylated tacn ligands (k ∼ 1.5 × 10−5 s−1).  相似文献   

17.
Ni(II) complexes (15) of di-2-pyridyl ketone N(4)-phenylthiosemicarbazone (HL) have been synthesized and spectrochemically characterized. Elemental analyses revealed a NiL2 · 2H2O stoichiometry for compound 1. However, the single crystals isolated revealed a composition NiL2 · 0.5(H2O)0.5(DMF). The compound crystallizes into a monoclinic lattice with the space group P21/n. Complexes 2, 3 and 4 are observed to show a 1:1:1 ratio of metal:thiosemicarbazone:gegenion, with the general formula NiLX · yH2O [X = NCS, y = 2 for 2; X = Cl, y = 3 for 3 and X = N3, y = 4.5 for 4]. Compound 5 is a dimer with a metal:thiosemicarbazone:gegenion ratio of 2:2:1, with the formula [Ni2L2(SO4)] · 4H2O.  相似文献   

18.
Treatment of the chloro-bridged dinuclear compounds [{Pd[RC6H3C(H)NCy-C2,N]}(μ-Cl)]2 (R = 4-(COH), 1; R = 5-(COH), 2) with bidentate phosphorus or arsenic diphosphines or diarsine ligands in 1:1 molar ratio gave the dinuclear complexes [{Pd[RC6H3C(H)NCy-C2,N](Cl)}2{μ-(o-Tol)2P(CH2)2P(o-Tol)2}] (R = 4-(COH), 3; R = 5-(COH), 4), [{Pd[RC6H3C(H)NCy-C2,N](Cl)}2{μ-Ph2PC4H2(NH)CH2PPh2}] (R = 4-(COH), 5; R = 5-(COH), 6) and [{Pd[RC6H3C(H)NCy-C2,N](Cl)}2{μ-Ph2As(CH2)2AsPh2}] (R = 4-(COH), 7; R = 5-(COH), 8) with the homobidentate [P,P] and [As,As] ligands in a bridging mode. Treatment of 1 and 2 with the aminophosphine Ph2P(CH2)2NH2 yields the dinuclear complexes [{Pd[RC6H3C(H)NCy-C2,N](Cl)}2{μ-Ph2P(CH2)2NH2}] (R = 4-(COH), 9; R = 5-(COH), 10). The analogous reactions carried out in a 1:2 molar ratio, in the presence of NH4PF6 or NaClO4, gave the mononuclear compounds [Pd{RC6H3C(H)NCy-C2,N}{(o-Tol)2P(CH2)2P(o-Tol)2-P,P}][PF6] (R = 4-(COH), 11; R = 5-(COH), 12), [Pd{RC6H3C(H)NCy-C2,N}{Ph2PC4H2(NH)CH2PPh2-P,P}][ClO4] (R = 4-(COH), 13; R = 5-(COH), 14) and [Pd{RC6H3C(H)NCy-C2,N}{Ph2As(CH2)2AsPh2-As,As}][ClO4](R = 4-(COH), 15; R = 5-(COH), 16), with the [P,P] and [As,As] ligands chelated to the palladium atom.Treatment of 2 with Ph2P(CH2)3NH2 in a 1:2 molar ratio in acetone in the presence of NH4PF6 afforded the mononuclear compound [Pd{5-(COH)C6H3C(H)NCy-C2,N}{Ph2P(CH2)3N(Me2)-P,N}][PF6], 17, via intermolecular condensation between the aminophosphine and the solvent. Condensation was precluded using toluene as solvent to give [Pd{RC6H3C(H)NCy-C2,N}{Ph2P(CH2)nNH2-P,N}][PF6], (n = 3, R = 5-(COH), 18; n = 2, R = 4-(COH), 19; n = 2, R = 5-(COH), 20). Treatment of 1 and 2 with Ph2P(C6H4)CHO in a 1:2 molar ratio in the presence of NH4PF6 gave the mononuclear complexes [Pd{RC6H3C(H)NCy-C2,N}{2-(Ph2P)C6H4CHO-P,O}][PF6] (R = 4-(COH), 21; R = 5-(COH), 22) with the palladium atom bonded to four different atoms (C, N, P, O) and a chelating [P,O] ligand. The crystal structures of compounds 7, 11, 15 and 21 have been determined by X-ray crystallography.  相似文献   

19.
Four new complexes [Ni3(μ-L)6(H2O)6](NO3)6·6H2O (1), [Co3(μ-L)6(H2O)6](NO3)6·6H2O (2), [Ni3(μ-L)6(H2O)4(CH3OH)2](NO3)6·4H2O (3), [Co3(μ-L)6(H2O)4(CH3OH)2](NO3)6·4H2O (4) (L = 4-amino-3,5-dimethanyl-1,2,4-triazole) were synthesized and structurally characterized by X-ray single-crystal diffraction. The structural analyses show that complex 1 and 2 are isomorphous; complex 3 and 4 are isomorphous. Four complexes all consist of the linear trinuclear cations ([M3(μ-L)6(H2O)6]6+ (M = Ni,Co) for 1 and 2; [M3(μ-L)6(H2O)4(CH3OH)2]6+ (M = Ni,Co) for 3 and 4), NO3 anions and crystallized water molecules. In the trinuclear cations, the central M(II) ions and two terminal M(II) ions are bridged by three triazole ligands. Other eleven solid solution compounds which are isomorphous with complex 3 and 4 were obtained by using different ratio of Ni(II) and Co(II) ions as reactants and ICP result indicates that ligand L has higher selectivity of Ni(II) ions than that of Co(II) ions. The magnetic analysis was carried out by using the isotropic spin Hamiltonian ? = −2J(?1?2 + ?2?3) (for complexes 1 and 3) and simultaneously considering the temperature dependent g factor (for complexes 2 and 4). Both the UV-Vis spectra and the magnetic properties of the solid solutions can be altered systematically by adjusting the Co(II)/Ni(II) ratio.  相似文献   

20.
Trichloro methyl [Nb{η5-C5H3(SiXMe2)(SiMe3)}Cl3Me] (X = Cl, 2; Me, 3), dichloro dimethyl [Nb{η5-C5H3(SiXMe2)(SiMe3)}Cl2Me2] (X = Cl, 4; Me, 5) and tetramethyl [Nb{η5-C5H3(SiXMe2)(SiMe3)}Me4] (X = Me, 6; Cl, 7) niobium complexes were synthesized by treatment of starting tetrachloro derivatives [Nb{η5-C5H3(SiXMe2)(SiMe3)}Cl4] (X = Cl, 1a; Me, 1b) with dimethyl zinc or chloro methyl magnesium in different proportions and conditions. A mixture of trichloro methyl and dichloro dimethyl tantalum complexes [Ta{η5-C5H3(SiClMe2)(SiMe3)}Cl4−xMex] (x = 1, 8; 2, 9) in a 2:1 molar ratio was obtained in the reaction of [Ta{η5-C5H3(SiClMe2)(SiMe3)}Cl4] (1c) with 0.5 equivalents of ZnMe2 in toluene at low temperature. 8 could be isolated as single compound when 1 equivalent of 1c was added to the mixtures of 8 and 9, while the reaction of 1c with 1.5 equivalents of dimethyl zinc gave 9 as unitary product. However, [Ta{η5-C5H3(SiMe3)2}Cl4] (1d) reacts with 0.5 equivalents of alkylating reagent giving the trichloro methyl compound [Ta{η5-C5H3(SiMe3)2}Cl3Me] (10) in good yield. On the other hand, [Ta{η5-C5H3(SiMe3)2}Cl4] (1d) reacts with 2 equivalents of MgClMe in hexane at room temperature giving a mixture of dichloro dimethyl and chloro trimethyl complexes[Ta{η5-C5H3(SiMe3)2}Cl4−xMex] (x = 2, 11; 3, 12), while the use of 4 equivalents of MgClMe converts 1c into the tetramethyl derivative [Ta{η5-C5H3(SiClMe2)(SiMe3)}Me4] (13). Finally, a tetramethyl tantalum complex [Ta{η5-C5H3(SiMe3)2}Me4] (14) was prepared by reaction of [Ta{η5-C5H3(SiXMe2)(SiMe3)}Cl4] (X = Cl, 1c; Me, 1d) with 5 (X = Cl) or 4 (X = Me) equivalents of MgClMe in diethyl ether (X = Cl) or hexane (X = Me), respectively, as solvent. All the complexes were studied by IR and NMR spectroscopy and the molecular structure of the complex 11 was determined by X-ray diffraction methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号