首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We describe fluorescence labeling of newly synthesized proteins in Escherichia coli cells by means of Cu(I)-catalyzed cycloaddition between alkynyl amino acid side chains and the fluorogenic dye 3-azido-7-hydroxycoumarin. The method involves co-translational labeling of proteins by the non-natural amino acids homopropargylglycine (Hpg) or ethynylphenylalanine (Eth) followed by treatment with the dye. As a demonstration, the model protein barstar was expressed and treated overnight with Cu(I) and 3-azido-7-hydroxycoumarin. Examination of treated cells by confocal microscopy revealed that strong fluorescence enhancement was observed only for alkynyl-barstar treated with Cu(I) and the reactive dye. The cellular fluorescence was punctate, and gel electrophoresis confirmed that labeled barstar was localized in inclusion bodies. Other proteins showed little fluorescence. Examination of treated cells by fluorimetry demonstrated that cultures supplemented with Eth or Hpg showed an 8- to 14-fold enhancement in fluorescence intensity after labeling. Addition of a protein synthesis inhibitor reduced the emission intensity to levels slightly above background, confirming selective labeling of newly synthesized proteins in the bacterial cell.  相似文献   

2.
Fluorescein labeling of peptides and proteins is required for numerous biophysical or biological experiments such as fluorescence microscopy, fluorescence resonance energy transfer (FRET) or fluorescence imaging. The commonly used strategy relied on the coupling of the dye reagent followed by a gel filtration to recover the labeled molecule. Here we report a simplified method for the labeling of peptides and proteins on a cysteine residue and their purification. The method is based on the precipitation of peptides and proteins in acetone, fluorescein maleimide being soluble in this solvent. The excess of dye is fully eliminated after a couple of acetone washes and the precipitated peptide or protein is readily recovered.  相似文献   

3.
A new terrylene diimide-based dye (WS-TDI) that is soluble in water has been synthesized, and its photophysical properties are characterized. WS-TDI forms nonfluorescing H-aggregates in water that show absorption bands being blue-shifted with respect to those of the fluorescing monomeric form. The ratio of monomeric WS-TDI to aggregated WS-TDI was determined to be 1 in 14 400 from fluorescence correlation spectroscopy (FCS) measurements, suggesting the presence of a large amount of soluble, nonfluorescent aggregates in water. The presence of a surfactant such as Pluronic P123 or CTAB leads to the disruption of the aggregates due to the formation of monomers in micelles. This is accompanied by a strong increase in fluorescence. A single molecule study of WS-TDI in polymeric films of PVA and PMMA reveals excellent photostability with respect to photobleaching, far above the photostability of other common water-soluble dyes, such as oxazine-1, sulforhodamine-B, and a water-soluble perylenediimide derivative. Furthermore, labeling of a single protein such as avidin is demonstrated by FCS and single molecule photostability measurements. The high tendency of WS-TDI to form nonfluorescent aggregates in water in connection with its high affinity to lipophilic environments is used for the fluorescence labeling of lipid membranes and membrane containing compartments such as artificial liposomes or endosomes in living HeLa cells. The superior fluorescence imaging quality of WS-TDI in such applications is demonstrated in comparison to other well-known membrane staining dyes such as Alexa647 conjugated with dextran and FM 4-64 lipophilic styryl dye.  相似文献   

4.
1,1',3,3,3',3'-Hexamethylindotricarbocyanine iodide (HITCI) is a commercially available, positively charged, indocarbocyanine dye used typically as a laser dye in the near infrared (NIR). The absorbance and fluorescence properties of HITCI in a variety of solvent systems were determined. Results indicate that the fluorescence of HITCI is not significantly affected by the pH. Titration of HITCI with human serum albumin (HSA) and trypsinogen was carried out to investigate the interactions between this dye and proteins. These studies revealed that the absorbance and fluorescence properties of the dye change upon binding to protein in a wide range of solution pH's. The potential use of HITCI as a noncovalent protein labeling probe, therefore, was explored. Determination and separation of HITCI and HITCI-protein complexes was performed by capillary electrophoresis with diode-laser induced fluorescence detection (CE-LIF). Both pre-column and on-column noncovalent labeling methods are demonstrated.  相似文献   

5.
Some polymeric azine or thiazine dyes were prepared by radical polymerization of dye monomers or by polymer reactions between dyes and suitable prepolymers, and their photoredox reactivities were studied. The thionine polymers containing labile ? OH groups exhibited photochromism and thermochromism, which were extremely sensitive to the moisture content of the polymer film. The reversibility of the photochromism and thermochromism increased with the water content in the film. The water-soluble polymeric dyes were photobleached under the influence of suitable reducing agents. The degree of photobleaching was smaller than for the monomeric systems except for the dye polymers containing ? OH groups, probably because of the large steric hindrance of the polymers.  相似文献   

6.
A series of novel functional carbazole (Cbz)-based carboxylated monomers were synthesized and characterized. A Clauson-Kaas procedure, a deprotection step, amide coupling, and hydrolysis were utilized as key chemical reactions towards the multistep synthesis of monomers in good to excellent isolated yields. The design strategy was further extended to complex carbazole-COOH monomers incorporated arylazo groups as photoreactive moieties. In addition, photoreactive hybrid carbazole (Cbz)-pyrrole (Pyr)-based carboxylated monomers, comprising a pyrrole core linking a carbazole and a photoreactive phenylazide or benzophenone moiety through an amide spacer in the molecular structure, were also synthesized. The latter can be utilized for surface modification of polymeric films in their monomeric form or as polymeric microparticles (MPs).  相似文献   

7.
A dichromatic method for measuring the specific activity of beta-glucuronidase from complex cell homogenates or partially purified protein fractions is presented. Dual fluorescence is achieved by using the green emitting fluorogenic substrate ELF 97 beta-D-glucuronide to detect beta-glucuronidase activity, followed by the red emitting SYPRO Ruby protein gel stain or SYPRO Ruby IEF gel stain to detect the remaining proteins in the electrophoretic profile. Both ELF 97 alcohol, the highly fluorescent hydrolytic product generated from the enzyme substrate, and the SYPRO Ruby total protein stains are maximally excited by ultraviolet illumination. ELF 97 alcohol emits maximally at 525 nm while the SYPRO Ruby dyes emit maximally at 610 nm. Since ELF 97 beta-glucuronide is a precipitating substrate, it allows precise localization of beta-glucuronidase activity with minimal band diffusion. The staining method is simple and direct, without the requirement for ancillary coupling reactions. Dichromatic protein detection is demonstrated after sodium dodecyl sulfate(SDS)-polyacrylamide gel electrophoresis, carrier ampholyte-mediated isoelectric focusing or two-dimensional gel electrophoresis.  相似文献   

8.
Fluorescent probes are of increasing interest in medicinal and biological applications for the elucidation of the structures and functions of healthy as well as tumour cells. The quality of these investigations is determined by the intensity of the fluorescence signal. High dye/carrier ratios give strong signals. However, these are achieved by the occupation of a high number of derivatisation sites and therefore are accompanied by strong structural alterations of the carrier. Hence, polyvalent substances containing a high number of fluorescent dyes would be favourable because they would allow the introduction of many dyes at one position of the compound to be labelled.A large number of different dyes have been investigated to determine the efficiency of coupling to a dendrimer scaffold and the fluorescence properties of the oligomeric dyes, but compounds that fulfil the requirements of both strong fluorescence signals and reactivities are rare. Herein we describe the synthesis and characterisation of dye oligomers containing dansyl-, 7-nitro-2,1,3-benzoxadiazol-4-yl- (NBD), coumarin-343, 5(6)-carboxyfluorescein and sulforhodamine B2 moieties based on polyamidoamine (PAMAM) dendrimers. The PAMAM dendrimers were synthesised by an improved protocol that yielded highly homogeneous scaffolds with up to 128 conjugation sites. When comparing the fluorescent properties of the dye oligomers it was found that only the dansylated dendrimers met the requirements of enhanced fluorescence signals. The dendrimer containing 16 fluorescent dyes was conjugated to the anti-epidermal-growth-factor receptor (EGFR) antibody hMAb425 as a model compound to show the applicability of the dye multimer compounds. This conjugate revealed a preserved immunoreactivity of 54%.We demonstrate the applicability of the dye oligomers to the efficient and applicable labelling of proteins and other large molecules that enables high dye concentrations and therefore high contrasts in fluorescence applications.  相似文献   

9.
Fluorescent organic dyes are currently the standard signal-generating labels used in microarray quantification. However, new labeling strategies are needed to meet the demand for high sensitivity in the detection of low-abundance proteins and small molecules. In this report, a long-chain DNA/dye conjugate was used to attach multiple fluorescence labels on antibodies to improve signal intensity and immunoassay sensitivity. Compared with the 30 base-pair (bp) oligonucleotide used in our previous work [Q. Zhang, L.-H. Guo, Bioconjugate Chem. 18 (2007) 1668-1672], conjugation of a 219 bp DNA in solution with a fluorescent DNA binder SYBR Green I resulted in more than sixfold increase in signal intensity, consistent with the increase in bp number. In a direct immunoassay for the detection of goat anti-mouse IgG in a mouse IgG-coated 96-well plate, the long DNA conjugate label also produced higher fluorescence than the short one, accompanied by about 15-fold improvement in the detection limit. To demonstrate its advantage in real applications, the DNA/dye conjugate was employed in the competitive immunoassay of 17β-estradiol, a clinically and environmentally important analyte. The biotin-terminated DNA was attached to biotinylated anti-estradiol antibody through the biotin/streptavidin/biotin bridge after the immuno-reaction was completed, followed by conjugation with SYBR Green I. The limit of detection for 17β-estradiol is 1.9 pg mL−1, which is 200-fold lower than the assay using fluorescein-labeled antibodies. The new multiple labeling strategy uses readily available reagents, and is also compatible with current biochip platform. It has great potential in the sensitive detection of protein and antibody microarrays.  相似文献   

10.
We studied the effects of fluorescent labeling on the isoelectric points (pI values) of proteins using capillary isoelectric focusing with laser-induced fluorescence detection (cIEF-LIF). Specifically, we labeled green fluorescent protein (GFP) from the jellyfish Aequorea victoria with the fluorogenic dye 3-(2-furoyl)quinoline-2-carboxaldehyde (FQ). cIEF-LIF was used to monitor the native fluorescence of GFP and showed pI changes in GFP's FQ-labeled products. Multiple labeling of GFP with FQ produced a series of products with pI values shifted towards a low pH. We verified cIEF-LIF results with traditional slab gel IEF. Our cIEF-LIF technique can routinely detect 10(-11) M of FQ-labeled protein, whereas traditional slab gel IEF with silver stain detection gives detection limits of 10(-7) M in the same samples.  相似文献   

11.
Imaging dynamics of membrane proteins of live cells in a wash-free and real-time manner has been a challenging task. Herein, we report unprecedented applications of malachite green(MG), an organic dye widely used in pigment industry, as a switchable fluorophore to monitor membrane enzymes or noncatalytic proteins in live cells. Conformationally flexible MG is non-fluorescent in aqueous solution, yet covalent binding with endogenous proteins of cells significantly enhances its fluorescence at 670...  相似文献   

12.
When a labeling reagent is used, in the determination of proteins by capillary electrophoresis with laser-induced fluorescence detection, the multiple labeling of proteins frequently occurs, which can degrade the separation efficiency. In order to understand the influence of the multiple labeling of proteins on separation efficiency, the band broadening caused by a labeling reaction between bovine serum albumin (BSA) and a cyanine fluorescent dye (Cy5) was investigated using micellar electrokinetic chromatography in conjunction with diode laser-induced fluorometry. With the aid of an internal standard, methylene blue, the height equivalent to the theoretical plate (HETP) ratio of BSA to methylene blue was used as an indicator for band broadening under optimum separation conditions. Labeling conditions, including reaction buffer pH, reaction time, and initial concentration of Cy5 to bovine serum albumin, were found to influence the HETP ratio. The separation efficiency for the labeled protein was degraded by experimental conditions employed in the labeling, which indicates an increase in the heterogeneity of the final products.  相似文献   

13.
Sodium dodecyl sulfate-capillary gel electrophoresis (SDS-CGE) is performed to quantify monomeric avidin and biotin on a protein. Under non-reducing SDS-CGE conditions, avidin migrates as monomers exhibiting apparent molecular mass 17,000. In the presence of a biotin-protein conjugate, monomeric avidin binds the conjugate and forms a larger complex that migrates later in the separation. The difference between the remaining monomeric avidin and the initial amount is the portion of monomeric avidin bound to the conjugate. Accordingly, the number of biotin on the protein can be calculated. The assay is linearly responsive to increasing biotin loading in a biotinylation reaction of a protein. Accuracy of the assay is also demonstrated by good sample dilution recovery. Excellent quantitative reproducibility < 2% (relative standard deviation) is obtained for both intra- and inter-day measurements. Main advantages of the method include the use of monomeric avidin that minimizes steric hindrance to capture biotin on a protein and assay automation on a capillary electrophoresis apparatus.  相似文献   

14.
Cerebrospinal fluid (CSF) proteins were separated into three main fractions by size exclusion-high performance liquid chromatography (SE-HPLC). Subsequent analysis of each fraction by two-dimensional gel electrophoresis (2-DE) facilitated the detection of trace components in CSF and additionally provided more information about the native properties of various proteins. Certain proteins are present in a polymeric form and appear in the high molecular weight SE-HPLC fraction. In the middle molecular weight SE-HPLC fraction we found a CSF-specific transthyretin-related protein by immunoblotting with polyclonal antibodies to transthyretin. Possible interpolypeptide disulfide bonds of such polymeric proteins were studied using a nonreducing 2-DE system. This procedure revealed that all apolipoprotein E monomers in CSF, which are synthesized in astrocytes, are linked by disulfide bonds. In the CSF from a patient with clinically definite multiple sclerosis (MS), novel proteins appeared in the high molecular weight SE-HPLC fraction, which are obscured by other proteins if total CSF is analyzed.  相似文献   

15.
Specific labeling of biomolecules with biochemical and biophysical probes is a central element of proteomics research. Here we describe a coumarin-phosphine dye that undergoes activation of coumarin fluorescence upon Staudinger ligation with azides. Since azides can be metabolically incorporated into cellular proteins and oligosaccharides, this dye may be a useful tool for profiling proteins and their posttranslational modifications.  相似文献   

16.
A self-assembled column coating for capillary electrophoresis in conjunction with laser-induced fluorescence detection (CE-LIF) has been evaluated for the separation and quantitation of protein–dye complexes. This semi-permanent coating, composed of dimethylditetradecyl-ammonium bromide (2C14DAB), is inexpensive and easily assembled onto the column and it allows for better peak resolution and greater control over electroosmotic flow. The versatility of long-chained surfactant coatings was determined particularly with respect to their use with fluorescent probes, different pH buffers, and different proteins. Studies were performed to determine the stability of the coating under various pH and buffer conditions. Red-1c, a red luminescent squarylium dye, was used for on-column protein labeling concurrently with the surfactant coating and LIF detection. Protein–Red-1c complexes were excited with a 650-nm diode laser and their emission detected by a photomultiplier tube with a 664-nm filter. A comparison of pre-column labeling and on-column labeling of a two-model protein system (human serum albumin and β-lactoglobulin A) revealed higher efficiencies and greater sensitivities for both proteins using on-column labeling and coated columns. A linear relationship between peak height and protein concentration was obtained by CE-LIF for this on-column labeling method with 2C14DAB-coated columns and the Red-1c probe.  相似文献   

17.
Alexa dye staining of proteins is used for the fluorescence microscopy of single particles that are sometimes multimolecular protein complexes. To characterize the staining, post-staining determination must be made of which protein(s) in a complex have been Alexa-stained. The present communication describes the use of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for performing this determination. The Alexa-stained proteins are observed directly in gels by illumination with an ultraviolet transilluminator. The test multimolecular particle is bacteriophage T7. The protein capsid of T7 is a multimolecular complex that has both external and internal proteins. SDS-PAGE of Alexa-stained bacteriophage T7 produces fluorescent capsid proteins each of which usually comigrates with an unstained protein. However, one Alexa-induced modification of protein migration was observed by SDS-PAGE. Mass spectrometry shows that the protein with modified migration is the major protein of the outer shell of the T7 capsid. The procedures used are generally applicable. The distribution of Alexa staining among T7 capsid proteins depends on the size of the dye molecule used. The larger the dye molecule is, the greater the preference for external proteins.  相似文献   

18.
S-nitrosylated proteins are biomarkers of oxidative damage in aging and Alzheimer's disease (AD). Here, we report a new method for detecting and quantifying nitrosylated proteins by capillary gel electrophoresis with laser induced fluorescence detection (CGE-LIF). Dylight 488 maleimide was used to specifically label thiol group (SH) after switching the S-nitrosothiol (S-NO) to SH in cysteine using the "fluorescence switch" assay. In vitro nitrosylation model-BSA subjected to S-nitrosoglutathione (GSNO) optimized the labeling reactions and characterized the response of the LIF detector. The method proves to be highly sensitive, detecting 1.3 picomolar (pM) concentration of nitrosothiols in nanograms of proteins, which is the lowest limit of detection of nitrosothiols reported to date. We further demonstrated the direct application of this method in monitoring protein nitrosylation damage in MQ mediated human colon adenocarcinoma cells. The nitrosothiol amounts in MQ treated and untreated cells are 14.8±0.2 and 10.4±0.5 pmol/mg of proteins, respectively. We also depicted nitrosylated protein electrophoretic profiles of brain cerebrum of 5-month-old AD transgenic (Tg) mice model. In Tg mice brain, 15.5±0.4 pmol of nitrosothiols/mg of proteins was quantified while wild type contained 11.7±0.3 pmol/mg proteins. The methodology is validated to quantify low levels of S-nitrosylated protein in complex protein mixtures from both physiological and pathological conditions.  相似文献   

19.
In the present studies radiotracer techniques have been combined with biochemical separation procedures to investigate the selenium-containing proteins in the culture cells of the lung, trachea and their subcellular fractions. Subcellular separation of the lung and trachea tissues has been achieved by differential ultracentrifugation. The selenium-containing proteins in these compartments have been investigated by labeling of lung and trachea cultured cells in vitro with Se-75, gel electrophoretic separation of the proteins and autoradiographic detection of the tracer. The protein separation by gel electrophoresis using mono-dimensional (1D)- and two-dimensional (2D)-SDS-PAGE has been successfully applied for the selenium research. It has resulted in the detection of a large number of selenium-containing proteins. Two-dimensional gel electrophoresis (2-DE) was also helpful in the identification of the proteins of interest according to their molecular mass and isoelectric point. In this way more than 30 selenium-containing proteins could be distinguished in the lung and trachea samples. Some of them such as Gpx1, Trx1, SelP, SelT and Sel15 could be identified by means of immunoassays, their molecular weight and pI values and localized in the cellular compartments.  相似文献   

20.
We have investigated the sample preparation and electrophoresis conditions necessary to prepare DNA sequencing samples appropriate for use with near-infrared (IR) fluorescent labels with dye identification accomplished via lifetime techniques. It was found that several sample preparation protocols required attention to maximize the fluorescence yields of the labeling dyes, such as thermal cycling conditions, choice of counter ion used for the ethanol precipitation step and also, dye-primer versus dye-terminator chemistries. In addition, several different sieving matrices were investigated for their effects on both the fluorescence properties of the labeling dyes and electrophoretic resolution. Extended times used for the high temperature denaturing of duplexed DNA fragments during cycle sequencing produced cleavage products, in which the covalently attached dye to the sequencing primer was released through attack by dithiothreitol (DTT). Even under optimized thermal cycling conditions, free dye was generated that masked readable data from the sequencing traces. Ethanol precipitation was necessary to remove this free dye with the proper choice of counter ion (sodium). The results using different sieving matrices indicated that linear polyacrylamides (LPAs) were appropriate for any fluorescence measurement, since they could readily be replaced between runs minimizing deleterious memory effects associated with cross-linked polyacrylamide gels. After investigation of several different sieving LPAs, the commercially available POP6 was found to be particularly attractive, since it produced good electrophoretic resolution, single exponential behavior for the near-IR dye series investigated herein, and also, discernible lifetime differences within the dye set. Finally, dye-terminator chemistry was also found to minimize bleeding in the gel matrix produced by large amounts of unextended dye-primer within the gel lane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号