首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let G be a graph, and let f be an integer function on V with ${1\leq f(v)\leq d(v)}$ to each vertex ${\upsilon \in V}$ . An f-edge cover coloring is a coloring of edges of E(G) such that each color appears at each vertex ${\upsilon \in V(G)}$ at least f(υ) times. The maximum number of colors needed to f-edge cover color G is called the f-edge cover chromatic index of G and denoted by ${\chi^{'}_{fc}(G)}$ . It is well known that any simple graph G has the f-edge cover chromatic index equal to δ f (G) or δ f (G) ? 1, where ${\delta_{f}(G)=\,min\{\lfloor \frac{d(v)}{f(v)} \rfloor: v\in V(G)\}}$ . The fractional f-edge cover chromatic index of a graph G, denoted by ${\chi^{'}_{fcf}(G)}$ , is the fractional f-matching number of the edge f-edge cover hypergraph ${\mathcal{H}}$ of G whose vertices are the edges of G and whose hyperedges are the f-edge covers of G. In this paper, we give an exact formula of ${\chi^{'}_{fcf}(G)}$ for any graph G, that is, ${\chi^{'}_{fcf}(G)=\,min \{\min\limits_{v\in V(G)}d_{f}(v), \lambda_{f}(G)\}}$ , where ${\lambda_{f}(G)=\min\limits_{S} \frac{|C[S]|}{\lceil (\sum\limits_{v\in S}{f(v)})/2 \rceil}}$ and the minimum is taken over all nonempty subsets S of V(G) and C[S] is the set of edges that have at least one end in S.  相似文献   

2.
Given a group A and a directed graph G, let F(G, A) denote the set of all maps ${f : E(G) \rightarrow A}$ . Fix an orientation of G and a list assignment ${L : V(G) \mapsto 2^A}$ . For an ${f \in F(G, A)}$ , G is (A, L, f)-colorable if there exists a map ${c:V(G) \mapsto \cup_{v \in V(G)}L(v)}$ such that ${c(v) \in L(v)}$ , ${\forall v \in V(G)}$ and ${c(x)-c(y)\neq f(xy)}$ for every edge e = xy directed from x to y. If for any ${f\in F(G,A)}$ , G has an (A, L, f)-coloring, then G is (A, L)-colorable. If G is (A, L)-colorable for any group A of order at least k and for any k-list assignment ${L:V(G) \rightarrow 2^A}$ , then G is k-group choosable. The group choice number, denoted by ${\chi_{gl}(G)}$ , is the minimum k such that G is k-group choosable. In this paper, we prove that every planar graph is 5-group choosable, and every planar graph with girth at least 5 is 3-group choosable. We also consider extensions of these results to graphs that do not have a K 5 or a K 3,3 as a minor, and discuss group choosability versions of Hadwiger’s and Woodall’s conjectures.  相似文献   

3.
Let G be a graph and A an abelian group with the identity element 0 and ${|A| \geq 4}$ . Let D be an orientation of G. The boundary of a function ${f: E(G) \rightarrow A}$ is the function ${\partial f: V(G) \rightarrow A}$ given by ${\partial f(v) = \sum_{e \in E^+(v)}f(e) - \sum_{e \in E^-(v)}f(e)}$ , where ${v \in V(G), E^+(v)}$ is the set of edges with tail at v and ${E^-(v)}$ is the set of edges with head at v. A graph G is A-connected if for every b: V(G) → A with ${\sum_{v \in V(G)} b(v) = 0}$ , there is a function ${f: E(G) \mapsto A-\{0\}}$ such that ${\partial f = b}$ . A graph G is A-reduced to G′ if G′ can be obtained from G by contracting A-connected subgraphs until no such subgraph left. Denote by ${\kappa^{\prime}(G)}$ and α(G) the edge connectivity and the independent number of G, respectively. In this paper, we prove that for a 2-edge-connected simple graph G, if ${\kappa^{\prime}(G) \geq \alpha(G)-1}$ , then G is A-connected or G can be A-reduced to one of the five specified graphs or G is one of the 13 specified graphs.  相似文献   

4.
A broadcast on a nontrivial connected graph G is a function ${f:V \longrightarrow \{0, \ldots,\operatorname{diam}(G)\}}$ such that for every vertex ${v \in V(G)}$ , ${f(v) \leq e(v)}$ , where ${\operatorname{diam}(G)}$ denotes the diameter of G and e(v) denotes the eccentricity of vertex v. The broadcast independence number is the maximum value of ${\sum_{v \in V} f(v)}$ over all broadcasts f that satisfy ${d(u,v) > \max \{f(u), f(v)\}}$ for every pair of distinct vertices u, v with positive values. We determine this invariant for grid graphs ${G_{m,n} = P_m \square P_n}$ , where ${2 \leq m \leq n}$ and □ denotes the Cartesian product. We hereby answer one of the open problems raised by Dunbar et al. in (Discrete Appl Math 154:59–75, 2006).  相似文献   

5.
Bounds on the 2-Rainbow Domination Number of Graphs   总被引:1,自引:0,他引:1  
A 2-rainbow domination function of a graph G is a function f that assigns to each vertex a set of colors chosen from the set {1, 2}, such that for any ${v\in V(G), f(v)=\emptyset}$ implies ${\bigcup_{u\in N(v)}f(u)=\{1,2\}.}$ The 2-rainbow domination number γ r2(G) of a graph G is the minimum ${w(f)=\Sigma_{v\in V}|f(v)|}$ over all such functions f. Let G be a connected graph of order |V(G)| = n ≥ 3. We prove that γ r2(G) ≤ 3n/4 and we characterize the graphs achieving equality. We also prove a lower bound for 2-rainbow domination number of a tree using its domination number. Some other lower and upper bounds of γ r2(G) in terms of diameter are also given.  相似文献   

6.
A signed k-submatching of a graph G is a function f : E(G) → {?1,1} satisfying f (E G (v)) ≤ 1 for at least k vertices ${v \in V(G)}$ . The maximum of the values of f (E(G)), taken over all signed k-submatchings f, is called the signed k-submatching number and is denoted by ${\beta_S^{k}(G)}$ . In this paper, sharp bounds on ${\beta_S^{k}(G)}$ for general graphs are presented. Exact values of ${\beta_S^{k}(G)}$ for several classes of graphs are found.  相似文献   

7.
For a nonempty graph G = (V, E), a signed edge-domination of G is a function ${f: E(G) \to \{1,-1\}}$ such that ${\sum_{e'\in N_{G}[e]}{f(e')} \geq 1}$ for each ${e \in E(G)}$ . The signed edge-domatic number of G is the largest integer d for which there is a set {f 1,f 2, . . . , f d } of signed edge-dominations of G such that ${\sum_{i=1}^{d}{f_i(e)} \leq 1}$ for every ${e \in E(G)}$ . This paper gives an original study on this concept and determines exact values for some special classes of graphs, such as paths, cycles, stars, fans, grids, and complete graphs with even order.  相似文献   

8.
Let G be a graph with vertex set V(G), and let f : V(G) → {?1, 1} be a two-valued function. If k ≥ 1 is an integer and ${\sum_{x\in N[v]} f(x) \ge k}$ for each ${v \in V(G)}$ , where N[v] is the closed neighborhood of v, then f is a signed k-dominating function on G. A set {f 1,f 2, . . . ,f d } of distinct signed k-dominating functions on G with the property that ${\sum_{i=1}^d f_i(x) \le k}$ for each ${x \in V(G)}$ , is called a signed (k, k)-dominating family (of functions) on G. The maximum number of functions in a signed (k, k)-dominating family on G is the signed (k, k)-domatic number of G. In this article we mainly present upper bounds on the signed (k, k)-domatic number, in particular for regular graphs.  相似文献   

9.
Let ${G: \mathbb {C}^{n-1} \rightarrow \mathbb {C}}$ be holomorphic such that G(0)?=?0 and DG(0)?=?0. When f is a convex (resp. starlike) normalized (f(0)?=?0, f??(0)?=?1) univalent mapping of the unit disk ${\mathbb {D}}$ in ${\mathbb {C}}$ , then the extension of f to the Euclidean unit ball ${\mathbb {B}}$ in ${\mathbb {C}^n}$ given by ${\Phi_G(f)(z)=(f(z_1)+G(\sqrt{f^{\prime}(z_1)} \, \hat{z}),\sqrt{f^{\prime}(z_1)}\, \hat{z})}$ , ${\hat{z}=(z_2,\dots,z_n) \in \mathbb {C}^{n-1}}$ , is known to be convex (resp. starlike) if G is a homogeneous polynomial of degree 2 with sufficiently small norm. Conversely, it is known that G cannot have terms of degree greater than 2 in its expansion about 0 in order for ${\Phi_G(f)}$ to be convex (resp. starlike), in general. We examine whether the restriction that f be either convex or starlike of a certain order ${\alpha \in (0,1]}$ allows, in general, for G to contain terms of degree greater than 2 and still have ${\Phi_G(f)}$ maintain the respective geometric property. Related extension results for convex and starlike Bloch mappings are also given.  相似文献   

10.
For ${f,g\in\omega^\omega}$ let ${c^\forall_{f,g}}$ be the minimal number of uniform g-splitting trees needed to cover the uniform f-splitting tree, i.e., for every branch ν of the f-tree, one of the g-trees contains ν. Let ${c^\exists_{f,g}}$ be the dual notion: For every branch ν, one of the g-trees guesses ν(m) infinitely often. We show that it is consistent that ${c^\exists_{f_\epsilon,g_\epsilon}{=}c^\forall_{f_\epsilon,g_\epsilon}{=}\kappa_\epsilon}$ for continuum many pairwise different cardinals ${\kappa_\epsilon}$ and suitable pairs ${(f_\epsilon,g_\epsilon)}$ . For the proof we introduce a new mixed-limit creature forcing construction.  相似文献   

11.
Suppose that G is a graph and ${f: V (G) \rightarrow \mathbb{N}}$ is a labeling of the vertices of G. Let S(v) denote the sum of labels over all neighbors of the vertex v in G. A labeling f of G is called lucky if ${S(u) \neq S(v),}$ for every pair of adjacent vertices u and v. Also, for each vertex ${v \in V(G),}$ let L(v) denote a list of natural numbers available at v. A list lucky labeling, is a lucky labeling f such that ${f(v) \in L(v),}$ for each ${v \in V(G).}$ A graph G is said to be lucky k-choosable if every k-list assignment of natural numbers to the vertices of G permits a list lucky labeling of G. The lucky choice number of G, η l (G), is the minimum natural number k such that G is lucky k-choosable. In this paper, we prove that for every graph G with ${\Delta \geq 2, \eta_{l}(G) \leq \Delta^2-\Delta + 1,}$ where Δ denotes the maximum degree of G. Among other results we show that for every 3-list assignment to the vertices of a forest, there is a list lucky labeling which is a proper vertex coloring too.  相似文献   

12.
LetG be an arbitrary domain in \(\bar C\) ,f a function meromorphic inG, $$M_f \mathop = \limits^{def} \mathop {\lim \sup }\limits_{G \mathrel\backepsilon z \to \partial G} \left| {f(z)} \right|< \infty ,$$ andR the sum of the principal parts in the Laurent expansions off with respect to all its poles inG. We set $$f_G (z) = R(z) - \alpha ,{\mathbf{ }}where{\mathbf{ }}\alpha = \mathop {\lim }\limits_{z \to \infty } (f(z) - R(z))$$ in case ∞?G, andα=0 in case ∞?G. It is proved that $$\left\| {f_G } \right\|_{C(\partial G)} \leqq 50(\deg f_G )M_f ,{\mathbf{ }}\left\| {f'_G } \right\|_{L_1 (\partial G)} \leqq 50(\deg f_G )V(\partial G)M_f ,$$ where $$V(\partial G) = \sup \left\{ {\left\| {r'} \right\|_{L_1 (\partial G)} :r(z) = a/(z - b),{\mathbf{ }}\left\| r \right\|_{G(\partial G)} \leqq 1} \right\}.$$   相似文献   

13.
A group distance magic labeling or a ${\mathcal{G}}$ -distance magic labeling of a graph G =  (V, E) with ${|V | = n}$ is a bijection f from V to an Abelian group ${\mathcal{G}}$ of order n such that the weight ${w(x) = \sum_{y\in N_G(x)}f(y)}$ of every vertex ${x \in V}$ is equal to the same element ${\mu \in \mathcal{G}}$ , called the magic constant. In this paper we will show that if G is a graph of order n =  2 p (2k + 1) for some natural numbers p, k such that ${\deg(v)\equiv c \mod {2^{p+1}}}$ for some constant c for any ${v \in V(G)}$ , then there exists a ${\mathcal{G}}$ -distance magic labeling for any Abelian group ${\mathcal{G}}$ of order 4n for the composition G[C 4]. Moreover we prove that if ${\mathcal{G}}$ is an arbitrary Abelian group of order 4n such that ${\mathcal{G} \cong \mathbb{Z}_2 \times\mathbb{Z}_2 \times \mathcal{A}}$ for some Abelian group ${\mathcal{A}}$ of order n, then there exists a ${\mathcal{G}}$ -distance magic labeling for any graph G[C 4], where G is a graph of order n and n is an arbitrary natural number.  相似文献   

14.
Let G =  (V, E) be a finite loopless graph and let (A, +) be an abelian group with identity 0. Then an A-magic labeling of G is a function ${\phi}$ from E into A ? {0} such that for some ${a \in A, \sum_{e \in E(v)} \phi(e) = a}$ for every ${v \in V}$ , where E(v) is the set of edges incident to v. If ${\phi}$ exists such that a =  0, then G is zero-sum A-magic. Let zim(G) denote the subset of ${\mathbb{N}}$ (the positive integers) such that ${1 \in zim(G)}$ if and only if G is zero-sum ${\mathbb{Z}}$ -magic and ${k \geq 2 \in zim(G)}$ if and only if G is zero-sum ${\mathbb{Z}_k}$ -magic. We establish that if G is 3-regular, then ${zim(G) = \mathbb{N} - \{2\}}$ or ${\mathbb{N} - \{2,4\}.}$   相似文献   

15.
We study the rate of uniform approximation by Nörlund means of the rectangular partial sums of double Fourier series of continuous functionsf(x, y), 2π-periodic in each variable. The results are given in terms of the modulus of symmetric smoothness defined by $$\begin{gathered} \omega _2 \left( {f,\delta _1 ,\delta _2 } \right) = \mathop {\sup }\limits_{x,y} \mathop {\sup }\limits_{\left| u \right| \leqslant \delta _1 ,\left| v \right| \leqslant \delta _2 } \left| {f\left( {x + u,y + v} \right)} \right. + f\left( {x + u,y - v} \right) + f\left( {x - u,y + v} \right) \hfill \\ + \left. {f\left( {x - u,y - v} \right) + 4f\left( {x,y} \right)} \right| for \delta _1 ,\delta _2 \geqslant 0. \hfill \\ \end{gathered} $$ As a special case we obtain the rate of uniform approximation to functionsf(x,y) in Lip({α, β}), the Lipschitz class, and inZ({α, β}), the Zygmund class of ordersα andβ, 0<α,β ≤ l, as well as the rate of uniform approximation to the conjugate functions \(\tilde f^{(1,0)} (x,y), \tilde f^{(0,1)} (x,y)\) and \(\tilde f^{(1,1)} (x,y)\) .  相似文献   

16.
Let D be a finite and simple digraph with vertex set V(D), and let f: V(D) → {?1, 1} be a two-valued function. If k ≥?1 is an integer and ${\sum_{x \in N^-(v)}f(x) \ge k}$ for each ${v \in V(G)}$ , where N ?(v) consists of all vertices of D from which arcs go into v, then f is a signed total k-dominating function on D. A set {f 1, f 2, . . . , f d } of signed total k-dominating functions on D with the property that ${\sum_{i=1}^df_i(x)\le k}$ for each ${x \in V(D)}$ , is called a signed total (k, k)-dominating family (of functions) on D. The maximum number of functions in a signed total (k, k)-dominating family on D is the signed total (k, k)-domatic number on D, denoted by ${d_{st}^{k}(D)}$ . In this paper we initiate the study of the signed total (k, k)-domatic number of digraphs, and we present different bounds on ${d_{st}^{k}(D)}$ . Some of our results are extensions of known properties of the signed total domatic number ${d_{st}(D)=d_{st}^{1}(D)}$ of digraphs D as well as the signed total domatic number d st (G) of graphs G, given by Henning (Ars Combin. 79:277–288, 2006).  相似文献   

17.
Let G be a connected graph. The notion of rainbow connection number rc(G) of a graph G was introduced by Chartrand et al. (Math Bohem 133:85–98, 2008). Basavaraju et al. (arXiv:1011.0620v1 [math.CO], 2010) proved that for every bridgeless graph G with radius r, ${rc(G)\leq r(r+2)}$ and the bound is tight. In this paper, we show that for a connected graph G with radius r and center vertex u, if we let D r  = {u}, then G has r?1 connected dominating sets ${ D^{r-1}, D^{r-2},\ldots, D^{1}}$ such that ${D^{r} \subset D^{r-1} \subset D^{r-2} \cdots\subset D^{1} \subset D^{0}=V(G)}$ and ${rc(G)\leq \sum_{i=1}^{r} \max \{2i+1,b_i\}}$ , where b i is the number of bridges in E[D i , N(D i )] for ${1\leq i \leq r}$ . From the result, we can get that if ${b_i\leq 2i+1}$ for all ${1\leq i\leq r}$ , then ${rc(G)\leq \sum_{i=1}^{r}(2i+1)= r(r+2)}$ ; if b i  > 2i + 1 for all ${1\leq i\leq r}$ , then ${rc(G)= \sum_{i=1}^{r}b_i}$ , the number of bridges of G. This generalizes the result of Basavaraju et al. In addition, an example is given to show that there exist infinitely graphs with bridges whose rc(G) is only dependent on the radius of G, and another example is given to show that there exist infinitely graphs with bridges whose rc(G) is only dependent on the number of bridges in G.  相似文献   

18.
For a positive integer k, a {k}-dominating function of a graph G is a function f from the vertex set V(G) to the set {0, 1, 2, . . . , k} such that for any vertex ${v\in V(G)}$ , the condition ${\sum_{u\in N[v]}f(u)\ge k}$ is fulfilled, where N[v] is the closed neighborhood of v. A {1}-dominating function is the same as ordinary domination. A set {f 1, f 2, . . . , f d } of {k}-dominating functions on G with the property that ${\sum_{i=1}^df_i(v)\le k}$ for each ${v\in V(G)}$ , is called a {k}-dominating family (of functions) on G. The maximum number of functions in a {k}-dominating family on G is the {k}-domatic number of G, denoted by d {k}(G). Note that d {1}(G) is the classical domatic number d(G). In this paper we initiate the study of the {k}-domatic number in graphs and we present some bounds for d {k}(G). Many of the known bounds of d(G) are immediate consequences of our results.  相似文献   

19.
A proper t-coloring of a graph G is a mapping ${\varphi: V(G) \rightarrow [1, t]}$ such that ${\varphi(u) \neq \varphi(v)}$ if u and v are adjacent vertices, where t is a positive integer. The chromatic number of a graph G, denoted by ${\chi(G)}$ , is the minimum number of colors required in any proper coloring of G. A linear t-coloring of a graph is a proper t-coloring such that the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number of a graph G, denoted by ${lc(G)}$ , is the minimum t such that G has a linear t-coloring. In this paper, the linear t-colorings of Sierpiński-like graphs S(n, k), ${S^+(n, k)}$ and ${S^{++}(n, k)}$ are studied. It is obtained that ${lc(S(n, k))= \chi (S(n, k)) = k}$ for any positive integers n and k, ${lc(S^+(n, k)) = \chi(S^+(n, k)) = k}$ and ${lc(S^{++}(n, k)) = \chi(S^{++}(n, k)) = k}$ for any positive integers ${n \geq 2}$ and ${k \geq 3}$ . Furthermore, we have determined the number of paths and the length of each path in the subgraph induced by the union of any two color classes completely.  相似文献   

20.
For Ω a bounded subset of R n,n 2,ψ any function in Ω with values in R∪{±∞}andθ∈W1,(q i)(Ω),let K(q i)ψ,θ(Ω)={v∈W1,(q i)(Ω):vψ,a.e.and v-θ∈W1,(q i)0(Ω}.This paper deals with solutions to K(q i)ψ,θ-obstacle problems for the A-harmonic equation-divA(x,u(x),u(x))=-divf(x)as well as the integral functional I(u;Ω)=Ωf(x,u(x),u(x))dx.Local regularity and local boundedness results are obtained under some coercive and controllable growth conditions on the operator A and some growth conditions on the integrand f.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号