首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
We have extended to molecules a density functional previously parametrized for atomic computations. The Coulomb-hole–Hartree–Fock functional, introduced by Clementi in 1963, estimates the dynamical correlation energy by the computations of a Hartree–Fock-type single-determinant wave function, where the Hartree–Fock potential was augmented with an effective potential term, related to a hard Coulomb hole enclosing each electron. The method was later revisited by S. Chakravorty and E. Clementi [Phys. Rev. A 39 , 2290 (1989)], where a Yukawa-type soft Coulomb hole replaced the previous hard hole; atomic correlation energies, computed for atoms with Z = 2 to Z = 54 as well as for a number of excited states, validated the method. In this article, we parametrized a function, which controls the width of the soft Coulomb hole, by fitting the first and second atomic ionization potentials of the atoms with 1 ? Z ? 18. The parametrization has been preliminarily validated by computing the dissociation energy for a number of molecules. A few-determinant version of the Coulomb-hole–Hartree–Fock method, necessary to account for the nondynamic correlation corrections, is briefly discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
We have shown that the empirical correction introduced into the Hartree-Fock method to calculate correlation energies for atoms and therefore to remove the error caused by the so-called Coulomb hole can be extended from atoms to molecules and polymers. A reformulation was required of the necessary parameter representation. The reparametrization has been performed staying as close as possible to the original expressions for atoms reported by Chakravorty and Clementi (S.J. Chakravorty and E. Clementi, Phys. Rev. A, 39 (1989) 2290). In addition to their work, where the correlation energy has been calculated with the self-consistent Hartree-Fock wavefunction and the correction integrals, we have performed investigations, including the perturbation operator in the Fock operator, so that the total energy also contains the correlation energy. The applications of this approach to atoms and molecules show that the total electron correlation energies and ionization potentials calculated as differences of total energies can be obtained very satisfactorily. On the basis of the reported calculations it turns out that one obtains better agreement with reference values of more sophisticated calculations when the correction integrals are used to build up the Fock matrix. Furthermore we have found that the magnitude of the correlation energy depends only weakly on the size of the basis sets, which makes this empirical method very attractive for its application to large molecular and polymeric systems.  相似文献   

3.
The Coulomb–Hole–Hartree–Fock method introduced by E. Clementi in the early 1960s and reparametrized more recently by S. Chakraworty and E. Clementi to compute the correlated electronic energy in atomic systems, is here extended to compute molecules. The new parametrization is obtained empirically by fitting first and second atomic ionization potentials from He to Ca and a few diatomic molecules. The present formulation makes use of either one or more determinants in order to ensure proper dissociation products, following the early proposal of G.C. Lie and E. Clementi in the context of density functional computations for molecular systems. The new formulation is tested against the dissociation energies of a large number of molecules and it is found satisfactory. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
In a recently proposed model, called Hartree-Fock-Heitler-London (HF-HL) (Corongiu, G. J. Phys. Chem. A 2006, 110, 11584), the molecular wave function was variationally obtained by merging two traditional models, Hartree-Fock (HF) and Heitler-London (HL). In the new method, the non-dynamical correlation energy-which includes state avoided crossing-is explicitly calculated with a few configurations. In this work the dynamical correlation energy for diatomic hydrides of the first and second period is computed both ab initio, via short MC-HF and MC-HL expansions-including ionic and excited covalent structures-and semiempirically, using the Coulomb hole algorithm, a density functional proposed by Clementi in the early 1960s. The Coulomb Hole correction is applied to HF and HF-HL functions, and, departing from tradition, also to HL functions. Few ab initio HF-HL configurations with inclusion of ionic structures yield reasonable binding energies not only for the hydrides considered but also for the van der Waals HeH molecule. The computed binding energies (in kcal/mol) from HF-HL functions corrected with the Coulomb hole functional are as follows: 109.48 (109.48) for H2[1Sigma+g]; 0.01 (0.01) for HeH [2Sigma+]; 59.22 (58.00) for LiH [1Sigma+], 49.55 (49.83) for BeH [2Sigma+], 86.77 (84.1) for BH [1Sigma+], 82.65 (83.9) for CH [2Pi], 81.57 (80.5) for NH [3Sigma-], 107.18 (106.6) for OH [2Pi], and 140.91 (141.5) for HF [1Sigma+]; experimental values are given in parentheses. The computed total energies are in good agreement with exact nonrelativistic values. The combined availability of the correlation and binding energies from HF, HL, and HF-HL models allows a novel analyses on the hydrides chemical bond, in agreement with accepted physical chemistry concept derived from MO and VB theories.  相似文献   

5.
Accurate second-order Møller-Plesset correlation energies are computed and compared with several semi-empirical estimates of the total correlation energies including those provided by Clementi, Anno and Teruya, and the recent results of Davidson, Froese and co-workers, for atoms with ten, twelve and eighteen electrons. Somewhat surprisingly, the MP2 correlation energies present what is considered to be in good agreement with the newest estimates, especially when the behaviour with the nuclear charge is examined.  相似文献   

6.
The soft Coulomb hole method introduces a perturbation operator, defined by ?e/r12 to take into account electron correlation effects, where ω represents the width of the Coulomb hole. A new parametrization for the soft Coulomb hole operator is presented with the purpose of obtaining better molecular geometries than those resulting from Hartree–Fock calculations, as well as correlation energies. The 12 parameters included in ω were determined for a reference set of 12 molecules and applied to a large set of molecules (38 homo‐ and heteronuclear diatomic molecules, and 37 small and medium‐size molecules). For these systems, the optimized geometries were compared with experimental values; correlation energies were compared with results of the MP2, B3LYP, and Gaussian 3 approach. On average, molecular geometries are better than the Hartree–Fock values, and correlation energies yield results halfway between MP2 and B3LYP. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

7.
Four density functionals — including that recently introduced by Perdew ((1986) Phys Rev B33: 8822)—are tested for first-row atoms, hydrides and dimers. Calculated contributions of the correlation energy to the ionization potentials and electron affinities of atoms and to the dissociation energies of molecules are compared with empirical values which were reevaluated for this purpose. An improvement over Hartree-Fock is found in all cases if the self-interaction or the gradient correction are included in the density functional, although there is a rather large variation in the accuracy of the predictions.  相似文献   

8.
Grid-based energy density analysis (grid-EDA) that decomposes the total energy into atomic energies by a space-partitioning function is proposed. The kinetic energy, nuclear attraction, and exchange-correlation functional are evaluated on grid points and are split into atomic contributions. To reduce numerical errors in the conventional scheme of numerical integration, the electronic Coulomb and HF exchange interactions are evaluated by the pseudospectral method, which was first applied to an ab initio method by Friesner [Chem. Phys. Lett. 116, 39 (1985)], and are decomposed into atomic contributions. Grid-EDA using the pseudospectral method succeeds in ensuring less than 1 kcalmol error in total energies for small molecules and providing reliable atomic energy contributions for the problematic lithium cluster, which exhibits a strong basis-set dependence for Mulliken-type EDA. Also, site-dependent atomization energies are estimated by grid-EDA for cluster models such as Li(48), C(41)H(60), and Mg(32)O(32). Grid-EDA reveals that these models imitate crystal environments reasonably because atomization energies estimated from the inner atoms of the models are close to the experimental cohesive energies.  相似文献   

9.
We have implemented analytical second-moment gradients for Hartree-Fock and multiconfigurational self-consistent-field wave functions. The code is used to calculate atomic dipole moments based on the generalized atomic polar tensor (GAPT) formalism [Phys. Rev. Lett. 62, 1469 (1989)], and the proposal of Dinur and Hagler (DH) for the calculation of atomic multipoles [J. Chem. Phys. 91, 2949 (1989)]. Both approaches display smooth basis-set convergence toward a well-defined basis-set limit and give reasonable electron correlation effects on the calculated atomic properties. However, the atomic charges and atomic dipole moments obtained from the GAPT partitioning scheme are unable to provide even qualitatively meaningful molecular quadrupole moments for some molecules, and thus the atomic multipole moments calculated in this scheme cannot be considered well suited for analyzing the electron density in molecules and for calculating intermolecular interaction energies. In contrast, the DH approach gives atomic charges and dipole moments that by definition exactly reproduce the molecular quadrupole moments. The approach of DH is, however, restricted to planar molecules and thus suffers from not being applicable to molecules of arbitrary shape. Both the GAPT and DH approaches give rather poor results for octupole and hexadecapole moments, indicating that at least atomic quadrupole moments are required for an accurate representation of the molecular charge distribution in terms of atomic electric moments.  相似文献   

10.
The accuracy of the RECEP method [Chem Phys 1997, 224, 33 and Chem Phys Lett 1999, 307, 469] has been increased considerably by the use of fitted atomic correlation parameters. This method allows an extremely rapid, practically prompt calculation of the correlation energy of molecules after an HF‐SCF calculation. The G2 level correlation energy and HF‐SCF charge distribution of 41 closed‐shell neutral molecules (composed of H, C, N, O, and F atoms) of the G2 thermochemistry database were used to obtain the fitted RECEP atomic correlation parameters. Four different mathematical definitions of partial charges, as a multiple choice, were used to calculate the molecular correlation energies. The best results were obtained using the natural population analysis, although the other three are also recommended for use. For the 41 molecules, the G2 results were approached within a 1.8 kcal/mol standard deviation (the mean absolute difference was 1.5 kcal/mol). The RECEP atomic correlation parameters were also tested on a different, nonoverlapping set of other 24 molecules from the G2 thermochemistry database. The G2 results of these 24 molecules were approached within a 2.3 kcal/mol standard deviation (the mean absolute difference was 1.9 kcal/mol). This method is recommended to estimate total correlation energies of closed shell ground‐state neutral molecules at stationary (minimums and transition states) points on the potential surface. Extension of the work for charged molecules, radicals, and molecules containing other atoms is straightforward. Numerical example as a recipe is also provided. © 2000 John Wiley & Sons, Inc. J Comput Chem 22: 241–254, 2001  相似文献   

11.
A procedure to represent atomic electron charge densities [L. Fernandez Pacios, J. Phys. Chem., 95 , 10653 (1991); J. Phys. Chem., 96 , 7294 (1992)] is here generalized to obtain simple analytical functions for potential energy contributions. Based upon suitable functions to describe atomic electron densities in a physically meaningful form, the procedure is developed to define density-dependent analytical expressions for the electrostatic (classical) and exchange (quantum) potentials by means of proper approximate functionals. Calculations of correlation energies by using various density-functional approaches are also performed. The whole scheme is used to represent Hartree–Fock limit atomic wave functions by Clementi–Roetti. This way, a set of analytically simple, nonbasis set-dependent functions are defined with the aim to be further implemented in energy decomposition schemes for molecular interactions studies using atomic instead of electronic building blocks. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
A Hirshfeld decomposition scheme of the Hartree-Fock total molecular energy into atomic energies is presented. The calculations are performed by direct numerical integration and the results are compared for a set of 28 molecules containing different kinds of atoms. The calculated atomic energies show a strong dependency on changes of atomic electron population and hybridization. Linear correlations are found between the energy and the population for H, these being related to the electronegativity of this atom and to the external potential created by the remaining atoms. The proposed energy partitioning scheme appears to be useful for studies such as proton acidity, the anomeric effect and group transferability, and allows atomic virial ratios to be obtained. Finally, the atomic potential energies are found to mimic trends based on exact expressions as well as trends displayed by molecular quantities, thus lending credibility to the partitioning scheme used.  相似文献   

13.
14.
Two approaches to approximate the Slater potential component of local exact exchange of density-functional theory are investigated. The first approach employs density fitting of the electrostatic potential integrals over two occupied orbitals and the other approach approximates the "exact" Slater potential with the potential derived from the Becke-Roussel [Phys. Rev. A. 39, 3761 (1989)] model of the exchange hole. In both cases significant time savings can be achieved for larger systems compared to the calculation of the numerical Slater potential. It is then analyzed how well the orbitals obtained from the various total exchange potentials reproduce Hartree-Fock energies and molecular properties. A large range of atoms and small molecules has been utilized, including the three DNA bases adenine, thymine, and cytosine.  相似文献   

15.
It has been suggested that the computational cost of correlated ab initio calculations could be reduced efficiently by using truncated basis sets on hydrogen atoms (Mintz et al., J Chem Phys 2004, 121, 5629). We now explore this proposal in the context of conformational analysis of small molecules, such as hydrogen peroxide, dimethyl ether, ethyl methyl ether, formic acid, methyl formate, and several small alcohols. It is found that truncated correlation consistent basis sets that lack certain higher angular momentum functions on hydrogen atoms offer accuracy similar to traditional Dunning's basis sets for conformational analysis. Combination of such basis sets with the basis set extrapolation technique to estimate Hartree-Fock and M?ller-Plesset second order energies provides composite extrapolation model chemistries that are significantly more accurate and faster than analogous single point calculations with traditional correlation consistent basis sets. Root mean square errors of best composite extrapolation model chemistries on the used set of molecules are within 0.03 kcal/mol of traditional focal point conformational energies. The applicability of composite extrapolation methods is illustrated by performing conformational analysis of tert-butanol and cyclohexanol. For comparison, conformational energies calculated with popular molecular mechanics force fields are also given.  相似文献   

16.
In the introductory section, we compare the total, kinetic, nuclear-electron, Coulomb, exchange, and correlation energies of ground-state atoms. From the analyses of the data, one can conclude that the Hartree-Fock (HF) model is notably good and might require only a small perturbation to become essentially an “accurate” model. For this reason and considering past literature, we present a semiempirical extension of the HF model. We start with a calibration of three independent models, each one with an effective Hamiltonian, which introduces a small perturbation on the kinetic, the nuclear-electron, or the Coulomb HF operators. The perturbations are expressed as very simple functions of products of orbital probability density. The three perturbations yield very equivalent results and the computed ground-state energies are reasonably near to the accurate nonrelativistic energies recently provided by E. Davidson and his collaborators for the 2–18 electron systems and the estimates by Clementi and his collaborators for the 19–54 electron systems. The first ionization potentials from He to Cs, the second ionization potentials from Li to Zn, and excitation energies for npn, 3dn, and 4s13dn configurations are used as additional verification and validation. The above three effective Hamiltonians are then combined in order to redistribute the correlation energy correction in a way which exactly satisfies the virial theorem and maintains the HF energy ratios between kinetic, nuclear-electron, and electron-electron interaction energies; the resulting effective Hamiltonian, named “virial constrained,” yields good quality data comparable to those obtained from the three independent effective operators. Concerning excitation energies, these effective Hamiltonians yield values only in modest agreement with experimental data, even if definitively superior to HF computations. To further improve the computed excitation energies, we applied an empirical scaling in the vector coupling coefficient; this correction yields very reasonable excitations for all the configurations that we have considered. We conclude that the use of effective potentials to introduce small perturbations density-dependent onto the HF model constitutes a broad class of practical and reliable semiempirical solutions to atomic many-electron problems, can provide an alternative to popular proposals from density functional theory, and should prepare the ground for “generalized HF models.” © 1997 John Wiley & Sons, Inc. Int J Quant Chem 62: 571–591, 1997  相似文献   

17.
A method is developed, based on Rayleigh-Schrödinger perturbation theory combined with variational constraints and screening, for obtaining accurate atomic eigenvalues from third-order 1/Z expansions. Application of the procedure to the ground states of the 3NV10 electron atomic sequences yields energies of 99.95–100.05% or greater accuracy, a marked improvement over those obtained from other third-order summations including Padé approximants. In the important test cases of the Be and Ne atoms, our results are found to exceed in accuracy all but the most elaborate ab initio calculations.  相似文献   

18.
We present benchmark calculations using several long-range-corrected (LRC) density functionals, in which Hartree-Fock exchange is incorporated asymptotically using a range-separated Coulomb operator, while local exchange is attenuated using an ansatz introduced by Iikura et al. [J. Chem. Phys. 115, 3540 (2001)]. We calculate ground-state atomization energies, reaction barriers, ionization energies, and electron affinities, each as a function of the range-separation parameter mu. In addition, we calculate excitation energies of small- and medium-sized molecules, again as a function of mu, by applying the LRC to time-dependent density functional theory. Representative examples of both pure and hybrid density functionals are tested. On the basis of these results, there does not appear to be a single range-separation parameter that is reasonable for both ground-state properties and vertical excitation energies. Reasonable errors in atomization energies and barrier heights are achieved only at the expense of excessively high excitation energies, at least for the medium-sized molecules, whereas values of mu that afford reasonable excitation energies yield some of the largest errors for ground-state atomization energies and barrier heights in small molecules. Notably, this conclusion is obscured if the database of excitation energies includes only small molecules, as has been the case in previous benchmark studies of LRC functionals.  相似文献   

19.
The atomic total energies of the four-electron isoelectronic series are calculated by theg-Hartree 2nd order perturbation theory and the Dirac-Hartree-Fock-Rayleigh-Schrödinger 2nd order perturbation theory. The Coulomb correlation energy is calculated by these theories. The Breit interaction, vacuum polarization, self-energy and Q.E.D. corrections are calculated by the lowest order approximation. The results show that theg-Hartree approach overestimates the Coulomb correlation energy. However, with an increase of the nuclear charge, it overestimates much less. In the case of the Hartree-Fock 2nd order calculation, it underestimates the Coulomb correlation energy. With an increase of the nuclear charge, it underestimates much more.  相似文献   

20.
An augmented valence triple-zeta basis set, referred to as G3Large, is reported for the first-row transition metal elements Sc through Zn. The basis set is constructed in a manner similar to the G3Large basis set developed previously for other elements (H-Ar, K, Ca, Ga-Kr) and used as a key component in Gaussian-3 theory. It is based on a contraction of a set of 15s13p5d Gaussian primitives to 8s7p3d, and also includes sets of f and g polarization functions, diffuse spd functions, and core df polarization functions. The basis set is evaluated with triples-augmented coupled cluster [CCSD(T)] and Brueckner orbital [BD(T)] methods for a small test set involving energies of atoms, atomic ions, and diatomic hydrides. It performs well for the low-lying s-->d excitation energies of atoms, atomic ionization energies, and the dissociation energies of the diatomic hydrides. The Brueckner orbital-based BD(T) method performs substantially better than Hartree-Fock-based CCSD(T) for molecules such as NiH, where the starting unrestricted Hartree-Fock wavefunction suffers from a high degree of spin contamination. Comparison with available data for geometries of transition metal hydrides also shows good agreement. A smaller basis set without core polarization functions, G3MP2Large, is also defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号