首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As some complexes of transition metal cations in high oxidation state can oxidize tertiary amines under proper conditions into aminoalkyl radicals to initiate polymerization of electron‐deficient vinylic monomers, they form mono‐centered redox‐initiation pairs for preparation of 100% alpha‐amino telechelic polymer. Radical emulsion polymerization of methyl methacrylate (MMA) is performed by using water‐soluble amines as a reducing agent and FeIII or CuII as an oxidizing agent. Tertiary amines such as 2‐(N,N‐dialkylamino)ethanol and N,N,N′,N′‐tertramethylethylenediamine exhibit a higher initiation activity. Monomer conversion can reach 80% in 8 h and 95% in 16 h, leading to PMMA with an absolute weight‐average molecular weight above 1.5 × 106 g mol?1. The alpha‐amino terminal functionality is verified by ultraviolet‐induced diarylketone‐initiated radical bock polymerization by using these PMMA chains as the macro‐sensitizer. Such a facile heterogeneous technique results in syndiotactic‐rich high‐Tg PMMA (rr > 50%, Tg = 124–127 °C). PMMA chains may be oxidized by FeII–O2 complexes to initiate further radical polymerization, leading to PMMA with a long‐chain branched architecture.

  相似文献   


2.
Carbon dots (CDs) have been used for the first time as a sensitizer to initiate and activate free radical and controlled radical polymerization, respectively, based on an ATRP protocol with blue LEDs. Consideration of diverse heteroatom‐doped CDs indicated that N‐doped CDs could serve as an effective photocatalyst and photosensitizer in combination with LEDs emitting either at 405 nm or 470 nm. Free radical polymerization was initiated by combining the CDs with an iodonium or sulfonium salt in tri(propylene glycol) diacrylate. Polymerization of methyl methacrylate (MMA) by photo‐induced ATRP was achieved with CDs and ethyl α‐bromophenylacetate using CuII as catalyst in the ppm range. The polymers obtained showed temporal control, narrower dispersity ?1.5, and chain‐end fidelity. The first‐order kinetics and ON/OFF experiments additionally gave evidence of the constant concentration of polymer radicals. No remarkable cytotoxic activity was observed for the CDs, underlining their biocompatibility.  相似文献   

3.
The Schiff base complexes containing a transition metal ion, CoII and CuII, were used as mimetic peroxidase in the catalytic oxidation of phenol by H2O2. The characteristic spectra of the Schiff base complexes in H2O2-buffered solution were recorded and analyzed, respectively. The mechanism and the kinetic mathematic model of the phenol catalytic oxidation were studied. The results showed that the Schiff base complexes containing the transition metal ion, CoII and CuII, as peroxidase mimics exhibited good catalytic activity and the character of the peroxidase in the catalytic oxidation of phenol by H2O2 under different conditions.  相似文献   

4.
Reaction of monobasic tridentate Hacpy-oap (Hacpy-oap?=?Schiff base derived from 2-acetylpyridine and o-aminophenol) with CuIICl2 in refluxing methanol results in formation of [CuII(acpy-oap)Cl]. DFT calculations have been used to optimize structure of the complex. [CuII(acpy-oap)Cl] has also been encapsulated in the nanocavity of zeolite-Y and its encapsulation ensured by various physico-chemical techniques. Neat as well as encapsulated complexes are active catalysts for oxidation of styrene and cyclohexene using tert-butylhydroperoxide. Reaction conditions for oxidation of these substrates have been optimized by concentration of oxidant, amount of catalyst, volume of solvent and temperature of the reaction mixture. [CuII(acpy-oap)Cl] does not leach metal ion during catalytic activity and is recyclable.  相似文献   

5.
Atom transfer radical polymerization (ATRP) and single electron‐transfer living radical polymerization (SET‐LRP) both utilize copper complexes of various oxidation states with N‐ligands to perform their respective activation and deactivation steps. Herein, we utilize DFT (B3YLP) methods to determine the preferred ligand‐binding geometries for Cu/N‐ligand complexes related to ATRP and SET‐LRP. We find that those ligands capable of achieving tetrahedral complexes with CuI and trigonal bipyramidal with axial halide complexes with [CuIIX]+ have higher energies of stabilization. We were able to correlate calculated preferential stabilization of [CuIIX]+ with those ligands that perform best in SET‐LRP. A crude calculation of energy of disproportionation revealed that the same preferential binding of [CuIIX]+ results in increased propensity for disproportionation. Finally, by examining the relative energies of the basic steps of ATRP and SET‐LRP, we were able to rationalize the transition from the ATRP mechanism to the SET‐LRP mechanism as we transition from typical nonpolar ATRP solvents to polar SET‐LRP solvents. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4950–4964, 2007  相似文献   

6.
Abstract

Although alkylcopper(I) reagents are widespread, compounds containing alkyl ligands on CuII or CuIII are much less common. Such complexes, however, are generated as transient species when carbon-center radicals add to CuI or CuII complexes, respectively, and appear to be involved in several copper-catalyzed organic transformations. A few organocopper(II) and organocopper(III) complexes were found sufficiently robust to allow isolation and full characterization. This article reviews the reactivity of carbon-centered radicals with CuI and CuII ions, both in aqueous and non-aqueous environments, with focus on the importance of the resulting organocopper species on atom transfer radical polymerization and on copper-catalyzed radical termination.  相似文献   

7.
Profound insights into the catalytic mechanism of galactose oxidase (GO) are offered by new models of the active form of the metalloenzyme. The important role of the CuII center in the oxidation of benzyl alcohol to benzaldehyde by the CuII–phenoxyl radical complex of ligand 1 has been revealed by comparison with the reactivity of the corresponding ZnII–phenoxyl radical complex; py=2-pyridyl.  相似文献   

8.
A hetero-dinuclear IrIII–CuII complex with two adjacent sites was employed as a catalyst for the aerobic oxidation of aromatic olefins driven by formate in water. An IrIII–H intermediate, generated through formate dehydrogenation, was revealed to activate terminal aromatic olefins to afford an Ir-alkyl species, and the process was promoted by a hydrophobic [IrIII–H]-[substrate aromatic ring] interaction in water. The Ir-alkyl species subsequently reacted with dioxygen to yield corresponding methyl ketones and was promoted by the presence of the CuII moiety under acidic conditions. The IrIII–CuII complex exhibited cooperative catalysis in the selective aerobic oxidation of olefins to corresponding methyl ketones, as evidenced by no reactivities observed from the corresponding mononuclear IrIII and CuII complexes, as the individual components of the IrIII–CuII complex. The reaction mechanism afforded by the IrIII–CuII complex in the aerobic oxidation was disclosed by a combination of spectroscopic detection of reaction intermediates, kinetic analysis, and theoretical calculations.

A hetero-dinuclear IrIII–CuII complex with two adjacent sites was employed as a catalyst for the aerobic oxidation of aromatic olefins driven by formate and promoted by a hydrophobic interaction in water.  相似文献   

9.
Abstract

The new ferrocene-containing water-soluble ligands 1 and 2 were synthesized and their protonation and complexation properties toward NiII and CuII studied as a function of pH, by means of potentiometric titration experiments. Electrochemical measurements were performed in aqueous solution on pure 1 and 2 and in the presence of NiII and CuII cations, in the pH range 2–12, allowing us to determine the redox potential values relative to the ferrocene oxidation in the free ligands and in their NiII and CuII complexes. 1 and 2 behave as redox switchable ligands, the former enhancing, the latter decreasing its binding ability upon oxidation of the appended ferrocene function. Besides, the CuII complex of ligand 1 and the NiII complex of ligand 2 behave as two-centre two-electron redox systems, the complexed metal cation being subject to further oxidation to MIII.  相似文献   

10.
The CuII-mediated oxidation of promazine by dioxygen to form promazine 5-oxide was studied in the presence of a large excess of dioxygen, CuII-halides (Cl, Br) and H+ ions using u.v.–vis and ESR spectroscopies. The first step is a fast reaction between promazine and CuII-halides leading to the production of a stable promazine radical with much higher yield in bromide than chloride media. ESR results provide clear evidence for the formation of this radical. In the second step the cation radical is oxidized by dioxygen to a dication hydrolyzing to promazine 5-oxide. The promazine-superoxide complex, concentration of which is determined by steady-state approximation, is postulated as a significant intermediate resulting from the reduction of dioxygen by the cation radical. The final product, promazine 5-oxide, is formed via a spontaneous and a CuII-assisted reaction path way. CuII controls the reaction rate through: (i) oxidation of promazine to the promazine radical, (ii) acting as a scavenger of superoxide, and (iii) slow oxidation of the promazine radical in the parallel reaction. The rate is independent of [H+], linearly dependent on [O2] and only slightly dependent on [CuII] within the excess concentration range of the CuII complexes used. Mechanistic consequences of all these results are discussed.  相似文献   

11.
Arene ruthenium(II) complexes bearing the cyclic amines RuCl26-p-cymene)(pyrrolidine)] ( 1 ), [RuCl26-p-cymene)(piperidine)] ( 2 ), and [RuCl26-p-cymene)(peridroazepine)] ( 3 ) were successfully synthesized. Complexes 1 – 3 were fully characterized by means of Fourier transform infrared, UV–visible, and NMR spectroscopy, elemental analysis, cyclic voltammetry, computational methods, and one of the complexes was further studied by single crystal X-ray crystallography. These compounds were evaluated as catalytic precursors for ring-opening metathesis polymerization (ROMP) of norbornene (NBE) and atom-transfer radical polymerization (ATRP) of methyl methacrylate (MMA). NBE polymerization via ROMP was evaluated using complexes 1 – 3 as precatalysts in the presence of ethyl diazoacetate (EDA) under different [NBE]/[EDA]/[Ru] ratios, temperatures (25 and 50°C), and reaction times (5–60 min). The highest yields of polyNBE were obtained with [NBE]/[EDA]/[Ru] = 5000/28/1 for 60 min at 50°C. MMA polymerization via ATRP was conducted using 1 – 3 as catalysts in the presence of ethyl-α-bromoisobutyrate (EBiB) as initiator. The catalytic tests were evaluated as a function of the reaction time using the initial molar ratio of [MMA]/[EBiB]/[Ru] = 1000/2/1 at 95°C. The increase in molecular weight as function of time indicates that complexes 1–3 were able to mediate the MMA polymerization with an acceptable rate and some level of control. Differences in the rate of polymerization were observed in the order 3 > 2 > 1 for the ROMP and ATRP.  相似文献   

12.
Diphenylsulfone (DPSO2) was found to react with an equimolar amount of potassium in tetrahydrofuran (THF), dimethoxyethane (DME), or diglyme (DG) at reflux or an elevated temperature to yield a reddish-black solution, giving an electron spin resonance (ESR) signal. The signal was attributed to the formation of relatively labile DPSO2 anion radical. The apparent effects of solvents on the reactivity of DPSO2 with potassium depended on the polarities and the solvation powers: benzene ? toluene ? dioxane ? tetrahydrofuran < monoglyme < diglyme. The monopotassium complex was found to react further with another molecular amount of the metal to yield a dark blue solution giving no ESR signal. The monopotassium complex initiated the polymerization of acrylonitrile (AN). It did not, however, initiate the polymerization of methyl methacrylate (MMA), styrene (St), or isoprene (IP). The active species of the monopotassium complex that initiated the polymerization of AN was found from analyses of the reaction products and the infrared spectrum of oily oligomer of AN obtained by the complex to be potassium benzenesulfinate. The dipotassium complex was found to initiate the polymerization of MMA, St, IP and AN. The active species of the dipotassium complex that initiated the polymerization of MMA, St, or IP was found from analyses of the reaction products and the infrared spectrum of the oily oligomer of MMA obtained by the complex to be phenyl potassium.  相似文献   

13.
Chloromethylated polystyrene‐supported macrocyclic Schiff base metal complexes (PS‐L‐M, M = Cu2+, Co2+, Ni2+, and Mn2+) were synthesized and characterized by the methods of IR, ICP, and small area X‐ray photoelectron spectroscopy (XPS). The oxidation of cumene by molecular oxygen in the absence of solvent with the synthesized complexes employed as catalyst was carried out. In comparison with their catalytic activities, PS‐L‐Cu is a more effective catalyst for the oxidation of cumene. The main products are 2‐phenyl‐2‐propanol (PP) and cumene hydroperoxide, which were measured by GC/MS. The influences of reaction temperature, the amount of catalyst, as well as the reaction time on the oxidation of cumene were investigated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Dioxygen activation by copper complexes is a valuable method to achieve oxidation reactions for sustainable chemistry. The development of a catalytic system requires regeneration of the CuI active redox state from CuII. This is usually achieved using extra reducers that can compete with the CuII(O2) oxidizing species, causing a loss of efficiency. An alternative would consist of using a photosensitizer to control the reduction process. Association of a RuII photosensitizing subunit with a CuII pre‐catalytic moiety assembled within a unique entity is shown to fulfill these requirements. In presence of a sacrificial electron donor and light, electron transfer occurs from the RuII center to CuII. In presence of dioxygen, this dyad proved to be efficient for sulfide, phosphine, and alkene catalytic oxygenation. Mechanistic investigations gave evidence about a predominant 3O2 activation pathway by the CuI moiety.  相似文献   

15.
A series of cobalt(II) phenoxy-imine complexes (CoII(FI)2) have been synthesized to mediate the radical polymerization of vinyl acetate (VAc) and methyl acrylate (MA) to evaluate the influence of chelating atoms and configuration to the control of polymerization. The VAc polymerizations showed the properties of controlled/living radical polymerization (C/LRP) with complexes 1a and 3a , but the catalytic chain transfer (CCT) behaviors with complexes 2a , 1b , 2b , and 3b . The control of VAc polymerization mediated by complex 1a could be improved by decreasing the reaction temperature to approach the molecular weights that not only linearly increased with conversions but also matched the theoretical values and relatively narrow molecular weight distributions. The catalytic chain transfer polymerizations (CCTP) mediated by complexes 2a , 1b , 2b , and 3b were characterized by Mayo plots and the polymer chain end double bonds were observed by 1H NMR spectra. The tendency toward C/LRP or CCTP in VAc polymerization mediated by CoII(FI)2 could be determined by the ligand structure. Cobalt complex coordinated by the ligand with more steric hindered and less electron-donating substituents favored the controlled/living radical polymerization. In contrast, the efficiency of CCT process could be enhanced by less steric hindered, more electron-donating ligands. The controlled/living radical polymerization of MA, however, could not be achieved by the mediation of these cobalt(II) phenoxy-imine complexes. Associated with the results of polymerization mediated by other cobalt complexes, this study implied that the configuration and spin state of cobalt complexes were more critical than the chelating atoms to the control behavior of radical polymerization. © 2019 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 101–113  相似文献   

16.
Bismesitoylphosphinic acid, (HO)PO(COMes)2 (BAPO‐OH), is an efficient photoinitiator for free‐radical polymerizations of olefins in aqueous phase. Described here are the structures of various copper(II) and copper(I) complexes with BAPO‐OH as the ligand. The complex CuII(BAPO‐O)2(H2O)2 is photoactive, and under irradiation with UV light in aqueous phase, it serves as a source of metallic copper in high purity and yield (>80 %). Simultaneously, the radical polymerization of acrylates can be initiated and allows the preparation of nanoparticle/polymer nanocomposites in which the metallic Cu nanoparticles are protected against oxidation. The determination of the stoichiometry of the photoreductions suggests an almost quantitative conversion from CuII into Cu0 with half an equivalent of BAPO‐OH, which serves as a four‐electron photoreductant.  相似文献   

17.
A method for electrosynthesis of heteropolynuclear biquinoline-containing CuI and PdII complexes using sacrificial Cu and Pd anodes was developed. The sequence of anode dissolution (first Pd and then Cu) was important for the synthesis of the complex. The opposite sequence of dissolution resulted in oxidation of the initially formed CuI ions to CuII. The obtained CuI and PdII complexes with polymer ligands had high catalytic activity in the reaction of aryl halides with phenylacetylene giving rise to a C(sp2)-C(sp) bond. The yield of arylphenylacetylene in the presence of 0.1 mol.% of Pd catalyst in relation to the starting halide was 50–90% depending on the nature of the aryl halide.  相似文献   

18.
《化学:亚洲杂志》2018,13(19):2868-2880
The reaction of 3,7‐diacetyl‐1,3,7‐triaza‐5‐phosphabicyclo[3.3.1]nonane (DAPTA) with metal salts of CuII or NaI/NiII under mild conditions led to the oxidized phosphane derivative 3,7‐diacetyl‐1,3,7‐triaza‐5‐phosphabicyclo[3.3.1]nonane‐5‐oxide (DAPTA=O) and to the first examples of metal complexes based on the DAPTA=O ligand, that is, [CuII(μ‐CH3COO)2O‐DAPTA=O)]2 ( 1 ) and [Na(1κOO′;2κO‐DAPTA=O)(MeOH)]2(BPh4)2 ( 2 ). The catalytic activity of 1 was tested in the Henry reaction and for the aerobic 2,2,6,6‐tetramethylpiperidin‐1‐oxyl (TEMPO)‐mediated oxidation of benzyl alcohol. Compound 1 was also evaluated as a model system for the catechol oxidase enzyme by using 3,5‐di‐tert‐butylcatechol as the substrate. The kinetic data fitted the Michaelis–Menten equation and enabled the obtainment of a rate constant for the catalytic reaction; this rate constant is among the highest obtained for this substrate with the use of dinuclear CuII complexes. DFT calculations discarded a bridging mode binding type of the substrate and suggested a mixed‐valence CuII/CuI complex intermediate, in which the spin electron density is mostly concentrated at one of the Cu atoms and at the organic ligand.  相似文献   

19.
The ground state electronic structure of copper corroles has been a topic of debate and revision since the advent of corrole chemistry. Computational studies formulate neutral Cu corroles with an antiferromagnetically coupled CuII corrole radical cation ground state. X‐ray photoelectron spectroscopy, EPR, and magnetometry support this assignment. For comparison, CuII isocorrole and [TBA][Cu(CF3)4] were studied as authentic CuII and CuIII samples, respectively. In addition, the one‐electron reduction and one‐electron oxidation processes are both ligand‐based, demonstrating that the CuII centre is retained in these derivatives. These observations underscore ligand non‐innocence in copper corrole complexes.  相似文献   

20.
We report the first ever use of electrochemically mediated atom transfer radical polymerization (eATRP) employing a bipolar electrochemical method for the fabrication of both gradient and patterned polymer brushes. A potential gradient generated on a bipolar electrode allowed the formation of a concentration gradient of a CuI polymerization catalyst through the one‐electron reduction of CuII, resulting in the gradient growth of poly(NIPAM) brushes from an initiator‐modified substrate surface set close to a bipolar electrode. These polymer brushes could be fabricated in three‐dimensional gradient shapes with control over thickness, steepness, and modified area by varying the electrolytic conditions. Moreover, by site‐selective application of potential during bipolar electrolysis, a polymer brush with a circular pattern was successfully formed. Polymerization was achieved using both a polar monomer (NIPAM) and a nonpolar monomer (MMA) with the eATRP system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号