首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Multi‐block copolymers of PLLA and PCL were prepared by a coupling reaction between PLLA and PCL prepolymers with –NCO end groups. FTIR proved that the products were PLLA‐PCL copolymers. The weight‐average molecular weight of the copolymers was up to 180,000 at a composition of 60% PLLA and 40% PCL. The degradation properties of PLLA and PLLA‐PCL copolymers were studied by a soil burial test and a hydrolysis test in a phosphate‐buffer solution. The degradation rate was estimated by the mass loss, molecular weight reduction, pH value changes and swelling index; the degradation rates of the copolymers were a function of the composition of PLLA and PCL. Increasing PCL content in the copolymers resulted in lower degradation rate.  相似文献   

2.
杨睿 《高分子科学》2014,32(2):230-235
The hydrothermal aging of poly(ethylene terephthalate)(PET) was investigated at 70 95 °C. A new method to investigate the hydrolysis degree of PET by Fourier transform infrared spectroscopy(FTIR) was proposed. The spectra during the hydrothermal aging were measured using attenuated total reflection accessory(ATR). Peak resolving of carbonyl regions was performed, and the ratio of two groups of bands representing carboxylic acids and esters respectively were calculated to show the hydrolysis degree of ester groups in PET. The acid/ester ratio shows exactly the same trend as the average chain scission number per unit mass at various temperatures and thus can be used as a parameter to characterize the hydrolysis and random chain scission of PET. This method related to the hydrolysis mechanism directly, is simple, fast and convenient compared to the traditional methods such as viscometry, end-group titration and size exclusion chromatography(SEC). It may also be useful in hydrolysis characterization of other polyesters.  相似文献   

3.

Comonomer sequence distribution and 1H‐NMR chemical shifts were determined for poly(ethyleneoxyethylene terephthalate‐co‐adipate) (PEOETA) copolyester. The sequence distribution of terephthalate (T) and adipate (A) residues was found to be random, which is typical for copolyesters synthesized via bulk polycondensation. The inner methylene protons of EOE residues appeared as a pair of doublets due to chemical shift differences among the EOE‐centered dyad sequences TT, TA, AT, and AA. The four equivalent phenylene protons of T residues appeared as a triplet due to chemical shift differences among the T‐centered triad sequences TTT, TTA (?ATA), and ATA. Higher‐order tetrad and pentad sensitivity were also observed for the inner methylene and phenylene protons, respectively, especially for TT‐ and TTT‐centered sequences. The sequence sensitivity of the phenylene protons was attributed to unique spatial interactions between themselves and protons within adjacent adipate and EOE units. These spatial interactions were confirmed using Nuclear Overhauser Enhancement Spectroscopy (NOESY).  相似文献   

4.
In this study, N‐vinylpyrrolidone (VP)/methacrylic acid (MAA) copolymers have been prepared at three different mole percents, the methacrylic acid composition being around 5, 10, 15%. MAA and VP monomer mixtures have been irradiated in 60Co‐γ source at different irradiation doses and percent conversions have been determined gravimetrically. ~80% conversion of monomers into hydrogels were performed at 3.4 kGy irradiation dose. These hydrogels were swollen in distilled water at pH 4.0, 7.0, and 9.0. P(VP/MAA) hydrogel which contains 5% methacrylic acid showed the maximum % swelling at pH 9.0 in water. Diffusion of water was found to be of non‐Fickian character. Diffusion coefficients of water in P(VP/MAA) hydrogels were calculated. Initial swelling rates of P(VP/MAA) hydrogels increased with increasing pH and MAA content in hydrogels. Swelling kinetics of P(VP/MAA) hydrogels was found to be of second order. Thermal behavior of PMAA, PVP and P(VP/MAA) hydrogel were investigated by thermal analysis. P(VP/MAA) hydrogel gained new thermal properties and the temperature for maximum weight loss and temperature for half‐life of P(VP/MAA) hydrogel were determined.  相似文献   

5.

A modified nano‐hydrotalcite was used as inorganic flame‐retardant fillers for poly(ethylene terephthalate) (PET) polymers. A flame‐retardant compound was obtained from layered hydrotalcite (LDH) dispersed in brominated polystyrene (PBS) solution and then solvent evaporation from the dissolved PBS samples. The compound of PBS/LDH was characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA) and was found to have high aspect ratio LDH dispersed in the PBS matrix. Flame‐retardant PET composite was prepared by melt‐compounding the flame‐retardant compound of PBS/LDH and PET. Improvement in the fire retardancy of the nano‐flame‐retardant PET composite obtained was found by measuring the oxygen index. The nanostructure of flame‐retardant PET composite was chirecterized by scanning electron microscopy (SEM) of flame‐retardant PET composite. The mechanical properties of the flame‐retardant PET nano‐composite were also characterized.  相似文献   

6.

The grafting of 3‐(trimethoxysilyl)propyl methacrylate (TMSPM) onto chitosan by ceric ion initiation was studied under homogeneous conditions in 2% acetic acid solution. The grafted polymer was characterized by FT‐IR, 1H‐NMR, TGA and XRD and swelling studies. TGA results showed that the incorporation of TMSPM to the chitosan chains decreased the thermal stability of the grafted chitosan. Due to the grafting of TMSPM, the crystallinity of chitosan derivatives was found to be destroyed. The solubility of the grafted chitosan in water was improved. The effects of reaction conditions such as initiator concentration, monomer concentration, reaction temperature and reaction time were studied by determining the grafting parameters such as grafting and grafting efficiency. Under optimum conditions, the grafting parameters were achieved as 1440 and 97%, respectively.  相似文献   

7.
In this study a series of chemically crosslinked chitosan/poly(ethylene glycol) (CS/PEG) composite membranes were prepared with PEG as a crosslinking reagent other than an additional blend. First, carboxyl-eapped poly(ethylene glycol) (HOOC-PEG-COOH) was synthesized. Dense CS/PEG composite membranes were then prepared by casting/evaporation of CS and HOOC-PEG-COOH mixture in acetic acid solution. Chitosan was chemically crosslinked due to the amidation between the carboxyl in HOOC-PEG-COOH and the amino in chitosan under heating, as confirmed by FTIR analysis. The hydrophilicity, water-resistance and mechanical properties of pure and crosslinked chitosan membranes were characterized, respectively. The results of water contact angle and water absorption showed that the hydrophilicity of chitosan membranes could be significantly improved, while no significant difference of weight loss between pure chitosan membranes and crosslinked ones was detected, indicating that composite membranes with amidation crosslinking possess excellent water resistanance ability. Moreover, the tensile strength of chitosan membranes could be significantly enhanced with the addition of certain amount of HOOC-PEG-COOH crosslinker, while the elongation at break didn't degrade at the same time. Additionally, the results of swelling behaviors in water at different pH suggested that the composite membranes were pH sensitive.  相似文献   

8.
Poly(2-hydroxyethylmethacrylate)(PHEMA)isahydroge1widelyusedinthefieldsofcontactlenses,atificialcorneasandsofttissuesubstitutes.However,theuseofPHEMAhydrogelisrestrictedduetoitsinsufficientlypermeablecharacterandlimitedwaterintake.Therefore,modificationsofthePHEMAhydrogelp1ayakeyroleinitspracticalaPplications'.Poly(ethyleneglycol)(PEG)isanonionicwatersolublematerialthathascomplexsolubilityproperties'.Meanwhile,PEGisnontoxic.Water-swellable,water-insolublehydrogelsmaybemadefromPEGbym…  相似文献   

9.
Thedeformationandrecoveryofamorphouspolymerwerestudiedinrecentyears'-'.SomeresearcherssuggestedthatthepostyieldingdeformationofamorphouspolymerwasmadeupoftwocomponentsfromDSC--volumeanddimensionrecoveryexperiments'-'.Butunderstandingaboutthisprocesswasincomplete,especiallyaboutthemotionofthechain.Theaimofthisarticlewastoinvestigate,onamacroscopicscale,thedifferentcomponentsoflargescaletensiledeformationbyobservingtherecoveryofuniaxiallystretcheda-PETfilmasafunctionoftime,temperatureanddrawra…  相似文献   

10.

A series of fluorine‐containing diblock copolymers based on lauryl methacrylate and 1H,1H,2H,2H‐perfluoroalkyl acrylate have been prepared by atom transfer radical polymerization (ATRP). The preparation process of PLMA‐Br macroinitiators was controlled within a reasonable time corresponding to the ln [M0]/[Mt]~time plot of the reaction. FTIR, 1H‐NMR, GPC and fluorine‐element analysis (FEA) were used to characterize the synthesized block copolymers. The solid surface activity of these polymers was demonstrated by contact angle measurement. The polymer films prepared by block copolymers with more than three fluorinated units showed low dispersion force contributions to the surface energy indicating the presence of the fluorinated block at the surface. The surface activity in solutions was measured by drop‐weight method. Ii is interesting to find, when the fluorine weight percentage is controlled constant, that PLMA‐b‐PFAEA with larger molecular size is more prominent in exploiting the fluorinated structure to reduce the surface tension of solutions. The block copolymer's ability in reducing surface tension of solutions also depends on the type of solvent.  相似文献   

11.

Single step polymerization of poly(o‐toluidine) was carried out by using ammonium persulphate as an oxidizing agent. Formation of the conducting emeraldine salt phase of the polymer was confirmed by the UV‐visible and FT‐IR spectroscopic analysis. The elemental composition of the polymer was evaluated by using a CHNS analyzer. Thermal stability of these polymers was investigated by the thermogravimetric analysis. Among the three polymeric acids used for doping purposes, poly(acrylic acid) doped material was found to show less thermal stability compared to poly(styrene sulphonic acid) and poly(vinyl sulphonic acid) doped poly(o‐toluidine).  相似文献   

12.
Abstract

Copolymers of methacryl‐N,N′‐diisopropylurea (MA‐DiPrU) with ethylene glycol dimethacrylate (EDMA) at monomer‐to‐monomer ratios in the feed: 0.3/0.7; 0.5/0.5; 0.7/0.3; 0.8/0.2 were prepared in butanone in the presence of 2% of dibenzoyl peroxide (Bz2O2) at 70°C for 48?hr. Copolymers regardless of the ratio of comonomers in the feed decompose thermally at 200–250°C under the separation of isopropylisocyanate (iPrNCO). Residues after the removal of iPrNCO are thermally stable nanoporous crosslinked copolymers of methacryl‐isopropylamide (MA‐iPrA) with EDMA which decompose by a one‐step mechanism between 280°C and 450°C. Nonporous model copolymers poly(MA‐iPrA‐co‐EDMA) of similar composition, prepared by copolymerization of MA‐iPrA with EDMA, also decomposed by a one‐step mechanism as shown by TGA measurements.  相似文献   

13.
In this investigation, poly(acrylamide‐co‐potassium methacrylate‐co‐maleic acid) hydrogels, poly(AAm‐KMA‐MA) were synthesized by redox copolymerization in aqueous solution. The effect of reaction parameters, such as concentration of maleic acid, crosslinking agent, initiator and activator, on the swelling behavior was investigated in detail. The swelling/diffusion characteristics were also evaluated for 1,4‐butanediol diacrylate (BDDA) and 1,2‐ethyleneglycol dimethacrylate (EGDMA) crosslinked hydrogels having different amounts of maleic acid. The results indicate that the water diffusion of hydrogels was of a non‐Fickian type. The hydrogels were characterized by IR spectroscopy and thermogravimetric analysis (TGA). Their surface characteristics were observed by using scanning electron microscopy (SEM). Furthermore, their swelling phenomena in different pH and salt solutions and simulated biological fluids was also studied.  相似文献   

14.

The purpose of this paper is to study the synthesis and application of a new type of chitosan‐g‐poly(L‐lactide) copolymer with different grafting percentage in the presence of triethylamine. FTIR and 1H NMR results indicate that grafting percentage of graft copolymers increases with the molar feeding ratio of L‐lactide to chitosan. The measurement of XRD and TG shows that graft copolymer exhibits low crystallinity and thermal degradation temperature. Static water contact angle testing suggests that graft copolymer has superior hydrophilicity compared with PLLA, which can be very useful for biomedical applications. 5‐Fluorouracil loaded copolymer microspheres were prepared by phase separation method. The size and distribution of microspheres were measured by a Laser particle analyzer. The microspheres with LLA:CS feeding molar rotio (15∶1) have a mean diameter of 332 nm with a narrow unimodal distribution. The spherical microspheres were observed by transmission electron microscopy (TEM). The microspheres shows good releasing property from drug release in vitro, and the drug release rate decreases as the increase of microspheres size.  相似文献   

15.

In order to provide an active end group of hydroxyl group and improve the hydrophility of poly(γ‐benzyl‐L‐glutamate) (PBLG), ethanolamine (EA) was utilized as the initiator to initiate N‐carboxy‐γ‐benzyl‐L‐glutamate anhydride (Bz‐L‐Glu‐NCA) polymerization. The prepared hydroxyl‐terminated PBLG (HO‐PBLG) was fully characterized by FTIR, 1H‐NMR, XPS, XRD, DSC, and GPC. The results of FTIR and XRD indicated that the chain conformation of HO‐PBLG predominantly presented α‐helix. The water contact angle was measured to confirm that the hydrophilicity was improved by the introduction of hydroxyl group. Chondrocytes studies showed that the cells attachment efficiency on the HO‐PBLG film was good and the cells grew well.  相似文献   

16.
17.

Copolyesters of isosorbide and 1,4‐butane diol were prepared by Ti(OBu)4‐catalyzed transesterifications with dimethyl terephthalate in bulk at temperatures up to 250°C. The content of isosorbide was considerably lower than expected from the feed ratio and the molar masses were low, so that no DSC measurements were conducted. Copolycondensations of isosorbide and 1,4‐butane diol with terephthaloyl chloride were either performed in dichloromethane at 40°C or in toluene at 100°C. The second method gave the higher molar masses. However, both series of polycondensations had the content of isosorbide roughly paralleled the feed ratios in common. The DSC measurements revealed that even 6 mol% of isosorbide is sufficient to raise the glass‐transition temperature (Tg) by 10–12°C (up to 55°C). With 50 mol% of isosorbide, the Tg reaches 100°C. Yet, incorporation of isosorbide also reduces the melting temperature Tm and the degree of crystallinity, and a mol percentage above 30% prevents crystallization completely. In summary, incorporation of isosorbide allows for fine‐tuning of Tg and Tm of poly(butylene terephthalate) over a wide range.  相似文献   

18.

Miscibility characteristics of poly[2‐hydroxyethylmethacrylate] (PHEMA) and poly[ethylene oxide] (PEO) have been investigated by solution viscometry, ultrasonic and differential scanning calorimetric (DSC) methods. The interaction parameters were obtained using the viscosity data. Ultrasonic velocity and adiabatic compressibility vs. blend composition have been plotted and are found to be linear. A single glass transition temperature was observed by differential scanning calorimetry. Variation of glass transition temperature (Tg) with composition follows Garden‐Taylor equation. Tg values have also been calculated from the Fox equation. The results obtained reveal that PHEMA forms a miscible blend with PEO in the entire composition range.  相似文献   

19.
Non-covalent adducts of poly(N-vinyl pyrrolidone) (PVP) (mol. wt. 10 K & 29 K) with sodium poly(α,L -glutamate)(PGNA) (mol. wt. 32 K) are prepared by evaporation of aqueous mixtures (EAM), ultra-centrifugation (UC) and dehydration of reverse micelles (DRM). The EAM and UC adducts contain nearly equal amounts of PVP while the DRM adduct has lower amounts. Higher-molecular-weight PVP favored greater PVP content in the adducts regardless of the method of preparation. DSC thermograms, and FT-IR and CD spectra of the three adducts in the solid state revealed that PVP and PGNA are intimately mixed and the PGNA is in a random conformation. Hydrophobic interactions between PGNA and PVP are evident in dilute aqueous solutions of all three adducts, while Na+ ions of PGNA remain as free ions. 2D-NOESY 1H NMR spectra of the EAM and UC adducts are very similar and show a strong correlation between the α-proton of PGNA with a pyrrolidone ring (no. 3 and no. 4 protons) and β-protons of PGNA with a pyrrolidone ring (no. 5 proton). In contrast, regarding the DRM adduct, only the α-proton of PGNA interacts with the pyrrolidone ring (no. 3 and no. 4 protons), presumably due to the orientation of the pyrrolidone ring at the organic phase–water interface of the reverse micelle, which causes the proton in position 5 of the ring to be buried in the organic phase. All three adducts dissociate in water to form free PVP and PGNA. However, the DRM adduct dissociates faster than other two, presumably due to reduced hydrophobic interactions. Differences in composition and properties observed for the non-covalent adducts may be attributed to the differences in intermolecular (hydrophobic) interactions imposed on the two components, PGNA and PVP, during each method of preparation.  相似文献   

20.

The synthesis of poly[(methyl methacrylate‐co‐hydroxyethyl methacrylate)‐b‐isobutylene‐b‐(methyl methacrylate‐co‐hydroxyethyl methacrylate)] P(MMA‐co‐HEMA)‐b‐PIB‐b‐P(MMA‐co‐HEMA) triblock copolymers with different HEMA/MMA ratios has been accomplished by the combination of living cationic and anionic polymerizations. P(MMA‐co‐HEMA)‐b‐PIB‐b‐P(MMA‐co‐HEMA) triblock copolymers with different compositions were prepared by a synthetic methodology involving the transformation from living cationic to anionic polymerization. First, 1,1‐diphenylethylene end‐functionalized PIB (DPE‐PIB‐DPE) was prepared by the reaction of living difunctional PIB and 1,4‐bis(1‐phenylethenyl)benzene (PDDPE), followed by the methylation of the resulting diphenyl carbenium ion with dimethylzinc (Zn(CH3)2). The DPE ends were quantitatively metalated with n‐butyllithium in tetrahydrofuran, and the resulting macroanion initiated the polymerization of methacrylates yielding triblock copolymers with high blocking efficiency. Microphase separation of the thus prepared triblock copolymers was evidenced by the two glass transitions at ?64 and +120°C observed by differential scanning calorimetry. These new block copolymers exhibit typical stress‐strain behavior of thermoplastic elastomers. Surface characterization of the samples was accomplished by angle‐resolved X‐ray photoelectron spectroscopy (XPS), which revealed that the surface is richer in PIB compared to the bulk. However, a substantial amount of P(MMA‐co‐HEMA) remains at the surface. The presence of hydroxyl functionality at the surface provides an opportunity for further modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号