首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aims to investigate the curing behavior of a vinyl ester‐polyester resin suspensions containing 0.3 wt % of multiwalled carbon nanotubes with and without amine functional groups (MWCNTs and MWCNT‐NH2). For this purpose, various analytical techniques, including Differential Scanning Calorimetry (DSC), Fourier infrared spectroscopy (FTIR), Raman Spectroscopy, and Thermo Gravimetric Analyzer (TGA) were conducted. The resin suspensions with carbon nanotubes (CNTs) were prepared via 3‐roll milling technique. DSC measurements showed that resin suspensions containing CNTs exhibited higher heat of cure (Q), besides lower activation energy (Ea) when compared with neat resin. For the sake of simplicity of interpretation, FTIR investigations were performed on neat vinyl ester resin suspensions containing the same amount of CNTs as resin. As a result, the individual fractional conversion rates of styrene and vinyl ester were interestingly found to be altered dependent on MWCNTs and MWCNT‐NH2. The findings obtained from RS measurements of the cured samples are highly proportional to those obtained from FTIR measurements. TGA measurements revealed that CNT modified nanocomposites have higher activation energy of degradation (Ed) compared with the cured polymer. The findings obtained revealed that CNTs with and without amine functional groups alter overall thermal curing response of the surrounding matrix resin, which may probably impart distinctive characteristics to mechanical behavior of the corresponding nanocomposites achieved. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1511–1522, 2009  相似文献   

2.
A series of PET/acid-treated multi-walled carbon nanotubes (MWCNTs) nanocomposites of varying nanoparticles’ concentration were prepared, using the in situ polymerization technique. TEM micrographs verified that the dispersion of the MWCNTs into the PET matrix was homogeneous, while some relatively small aggregates co-existed at higher filler contents. Intrinsic viscosity of the prepared nanocomposites was increased at low MWCNTs contents (up to 0.25 wt%), while at higher contents a gradual reduction was observed. The surface carboxylic groups of acid-treated MWCNTs probably reacted with the hydroxyl end groups of PET, acting as chain extenders at smaller concentrations, while at higher concentrations, on the other hand, led to the formation of branched and cross-linked macromolecules, with reduced apparent molecular weights. From the thermogravimetric curves, it was concluded that the prepared samples exhibited good thermostability, since no remarkable mass loss occurred up to 320 °C (<0.5%). The activation energy (E) of degradation of the studied materials was estimated using the Ozawa, Flynn, and Wall (OFW), Friedman and Kissinger’s methods. Pure PET had an E = 223.5 kJ/mol, while in the PET/MWCNTs nanocomposites containing up to 1 wt% the E gradually increased, indicating that MWCNTs had a stabilizing effect upon the decomposition of the matrix. Only the sample containing 2 wt% of MWCNTs exhibited a lower E due to the existence of the aforementioned cross-linked macromolecules. The form of the conversion function for all the studied samples obtained by fitting was the mechanism of nth-order auto-catalysis.  相似文献   

3.
Multi-walled carbon nanotubes (MWCNT)/poly(methyl methacrylate) (PMMA) nanocomposites were synthesized by the in situ reversible addition-fragmentation chain transfer (RAFT) polymerization of methyl methacrylate (MMA) in the presence of MWCNTs, at which the bulk polymer was grafted onto the surface of nanotubes through the ??grafting through?? strategy. For this purpose, MWCNTs were formerly functionalized with polymerizable MMA groups. MMA and PMMA-grafted MWCNTs were characterized by Fourier-transform infrared spectroscopy, Raman, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Dissolution of nanotubes was examined in chloroform solvent and studied by UV?Cvis spectroscopy. Thermogravimetric and degradation behavior of prepared nanocomposites was investigated by TGA. MWCNTs had a noticeable boosting effect on the thermal stability of nanocomposites. TGA thermograms showed a two-step weight loss pattern for the degradation of MWCNT-PMMA/PMMA nanocomposites which is contrast with neat PMMA. Introduction of MWCNTs also improved the dynamic mechanical behavior and electrical conductivity of nanocomposites. TEM micrograph of nanocomposite revealed that the applied methods for functionalization of nanotubes and in situ synthesis of nanocomposites were comparatively successful in dispersing the MWCNTs in PMMA matrix.  相似文献   

4.
In the present study poly(propylene sebacate) (PPSeb) nanocomposites containing 2 wt% of fumed silica nanoparticles (SiO2) or multiwalled carbon nanotubes (MWCNTs), or montmorillonite (MMT) were prepared by in situ polymerization. The thermal degradation of nanocomposites was studied using thermogravimetric analysis (TGA). It was found that the addition of MWCNTs and MMT enhances the thermal stability of the polymer, while SiO2 nanoparticles do not affect it. From the variation of the activation energy (E) with increasing degree of conversion it was found that the decomposition of nanocomposites proceeded with a complex reaction mechanism with the participation of at least two different steps. To evaluate the thermal decomposition mechanisms and mainly the effect of nanoparticles on the thermal decomposition of PPSeb, TGA/FTIR and a combination of TG-gas chromatography–mass spectrometry (TG/GC–MS) were used. From mass ions detection of the formed decomposition compounds it was found that the decomposition of PPSeb and its nanocomposites, takes place mainly through β-hydrogen bond scission and, secondarily, through α-hydrogen bond scission. The main decomposition products were aldehydes, alcohols, allyl, diallyl, and carboxylic acids.  相似文献   

5.
Multi‐walled carbon (MWCNT) and tungsten disulfide (INT‐WS2) nanotubes are materials with excellent mechanical properties, high electrical and thermal conductivity. These special properties make them excellent candidates for high strength and electrically conductive polymer nanocomposite applications. In this work, the possibility of the improvement of mechanical, thermal and electrical properties of poly(trimethylene terephthalate) (PTT) by the introduction of MWCNT and INT‐WS2 nanotubes was investigated. The PTT nanocomposites with low loading of nanotubes were prepared by in situ polymerization method. Analysis of the nanocomposites' morphology carried out by SEM and TEM has confirmed that well‐dispersed nanotubes in the PTT matrix were obtained at low loading (<0.5 wt%). Thermal and thermo‐oxidative stability of nanocomposites was not affected by the presence of nanotubes in PTT matrix. Loading with INT‐WS2 up to 0.5 wt% was insufficient to ensure electrical conductivity of PTT nanocomposite films. In the case of nanocomposites filled with MWCNT, it was found that nanotube incorporation leads to increase of electrical conductivity of PTT films by 10 orders of magnitude, approaching a value of 10?3 S/cm at loading of 0.3 wt%. Tensile properties of amorphous and semicrystalline (annealed samples) nanocomposites were affected by the presence of nanotubes. Moreover, the increase in the brittleness of semicrystalline nanocomposites with the increase in MWCNT loading was observed, while the nanocomposites filled with INT‐WS2 were less brittle than neat PTT. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
One kind of boron phenolic resin (BPR) was prepared from the solvent-less reaction of resoles with boric acid. X-ray photoelectron spectroscopy (XPS) showed that the reaction degree of boric acid was 83.8%. Multi-walled carbon nanotubes (MWCNTs) were modified by nitric acid, 4,4′-Diaminodiphenyl methane and boric acid. The effect of modification was determined by Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA) techniques and XPS. The cure kinetics and thermal behavior of BPR and modified multi-walled carbon nanotubes (m-MWCNTs)/BPR were studied. It was found that the curing apparent activation energy (Ea) decreased with the increasing amount of m-MWCNTs. But there was no obvious change in the orders of curing reactions. The results of TGA showed that 1.0 wt% of the m-MWCNTs could increase the thermal decomposition temperature (Td) and the char yield of m-MWCNTs/BPR nanocomposites by 36.7 °C and 6.2%. These critical enhancements will definitely help to attract more researches on this area.  相似文献   

7.
Polylactide (PLA) nanocomposites containing various functionalized multi-walled carbon nanotubes (MWCNTs) were prepared directly by melt compounding. The linear rheology and thermal stability of the PLA nanocomposites were, respectively, investigated by the parallel plate rheometer and TGA, aiming at examining the effect of surface functionalization on the dispersion of MWCNTs by using viscoelastic and thermal properties. Among three MWCNTs used in this work, the carboxylic MWCNTs present better dispersion in PLA matrix than the hydroxy and purified MWCNTs because the corresponding composite shows the lowest rheological percolation threshold, which is further confirmed by the TEM and solution experiments. The presence of all these three MWCNTs, however, nearly cannot improve the thermal stability effectively at the initial stage of degradation and the temperature corresponding to a weight loss of 5 wt% (T5 wt%) only shows slight increase in contrast to that of the neat PLA while with increase of decomposition level, the presence of carboxylic and purified MWCNTs retards the depolymerization of PLA evidently, showing remarkable increase in the temperature corresponding to maximum rate of decomposition (Tmax). Both the dispersion state and the surface functionalization of MWCNTs are very important to the thermal stability of PLA matrix.  相似文献   

8.
A series of poly(ethylene terephthalate)/multi‐walled carbon nanotubes (PET/MWCNTs) nanocomposites were prepared by in situ polymerization using different amounts of multi‐walled carbon nanotubes (MWCNTs). The polymerization of poly(ethylene terephthalate) (PET) was carried out by the two‐stage melt polycondensation method. The intrinsic viscosity (IV) of the composites is ranged between 0.31 and 0.63 dL/g depending on the concentration of the MWCNTs. A decrease of IV was found by increasing MWCNTs content. This is due to the reactions taking place between the two components leading to branched and crosslinked macromolecules. These reactions are, mainly, responsible for thermal behavior of nanocomposites. The melting point of the nanocomposites was shifted to slightly higher temperatures by the addition till 0.55 wt % of MWCNTs while for higher concentration was reduced. The degree of crystallinity in all nanocomposites was, also, reduced by increasing MWCNTs amount. However, from crystallization temperature, it was found that MWCNTs till 1 wt % can enhance the crystallization rate of PET, whereas at higher content (2 wt %), the trend is the opposite due to the formation of crosslinked macromolecules. From the extended crystallization analysis, it was proved that MWCNTs act as nucleating agents for PET crystallization. Additionally, the crystallization mechanism due to the existence of MWCNT becomes more complicated because two mechanisms with different activation energies are taking place in the different degrees of crystallization, depending on the percentage of MWCNT. The effect of molecular weight also plays an important role. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1452–1466, 2009  相似文献   

9.
The electrical, thermal and mechanical properties of nanocomposites, based on polypropylene (PP) filled by multi-walled carbon nanotubes (MWCNTs) and organo-clay (OC), were studied with the purpose of finding out the effect of OC on the microstructure of MWCNTs dispersion and PP/MWCNT/OC composites. It was found that addition of organo-clay nanoparticles improved nanotube dispersion and enhanced electrical properties of PP/MWCNT nanocomposites. Addition of organo-clay (MWCNT/OC ratio was 1/1) reduced the percolation threshold of PP/MWCNT nanocomposites from ?c = 0.95 vol.% to ?c = 0.68 vol.% of carbon nanotubes, while the level of conductivity became 2–4 orders of magnitude higher. The DSC and DMA analyses have shown that the influence of organo-clay on the thermal and mechanical properties of material was not significant in composites with both fillers as compared to PP/OC. Such an effect can be caused by stronger interaction of OC with carbon nanotubes than with polymer matrix.  相似文献   

10.
PANI/MWCNT-CdS nanocomposites with different content of CdS wt.% has been synthesized by the chemical oxidative in-situ polymerization reaction of aniline in the presence of multi-walled carbon nanotubes (MWCNT). TEM, XRD, FTIR, and TGA studies were done for the structural and thermal characterization of the samples respectively. The particle size of CdS nanoparticles distributes in between 2.7 and 4.8 nm. XRD spectrum reveals that the co-existence of MWCNT, CdS in PANI matrix, where CdS forms a hexagonal structure. TGA result shows that nanocomposite becomes more thermally stable with the increase in CdS content. The dc electrical transport property of PANI/MWCNT-CdS nanocomposites has been investigated within a temperature range 77 ≤ T ≤ 300 K. The dc conductivity follows a 3D variable range hopping (VRH) model. A large magnetoconductivity change (19%) is observed for 2 wt% CdS content in PANI/MWCNT-CdS, which is explained by the wave function shrinkage model.  相似文献   

11.
Summary: Nanocomposites of ultra-high molecular weight polyethylene (UHMWPE) filled with multi-walled carbon nanotubes (CNT) were obtained by in situ polymerization of ethylene by TpTiCl2Et. This novel catalytic complex activated with polymethylaluminoxane (P-MAO) (Al:Ti = 200) allowed to incorporate the CNT at different compositions (0,1-1 w/w %) into the UHMWPE matrix. The filler addition produced an important enhancement of the catalytic activity when it was compared to that of homogeneous ethylene polymerization carried out under the same experimental conditions (30 min; 1bar; 25 °C). This fact was attributed to in situ support of TpTiCl2Et onto the CNT surface, which not only could induce the stabilization of the catalytic system but also allowed the growing of polymeric chains around the CNT structures. The characterization of these nanocomposites was carried out by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Thermal analysis showed that the incorporation of CNT (at the tested concentrations) did not produce changes in the polymer thermal stability, as revealed by the initial degradation temperature values. However, the CNT produced a nucleating effect in the crystallization of UHMWPE as observed by DSC, independently of the filler content. The crystallization temperature of the obtained nanocomposites increased and the crystallinity degree slightly increased as well.  相似文献   

12.
This study describes the preparation of poly(?-caprolactone) (PCL)/multi-walled carbon nanotube (MWCNT) composites by ultrasonically mixing the PCL and as-fabricated MWCNT in a tetrahydrofuran solution. The TEM images show that the MWCNT is well separated and uniformly distributed in the PCL matrix. Differential scanning calorimetry (DSC), thermogravimetric analyzer (TGA), X-ray diffraction (XRD) and polarized optical microscopy (POM) were used to investigate the isothermal crystallization kinetics, crystalline structure and thermal behavior of PCL and PCL/MWCNT nanocomposites. DSC isothermal results revealed that the activation energy of PCL extensively decreases with increasing MWCNT contents, suggesting that the loading of MWCNT into PCL matrix probably induced heterogeneous nucleation during crystallization processes. From TGA data, the addition of small amount of MWCNT into PCL matrix can improve the thermal stability of PCL matrix. TGA isothermal degradation data illustrate that the activation energy Ed of the composites is smaller than that of PCL. This phenomenon can be attributed to the incorporation of more MWCNT loading into PCL caused a decrease in the degradation rate and an increase in the residual weight for PCL/MWCNT nanocomposites.  相似文献   

13.
Core–shell carboxyl‐functionalized multiwall carbon nanotube (c‐MWCNT)/poly(m‐aminophenol) (PmAP) nanocomposite were prepared through in‐situ polymerization of m‐aminophenol (m‐AP) in the presence of MWCNTs, and explicated as a dielectric material for electronic applications. The formation of thin PmAP layer on individual c‐MWCNT with excellent molecular level interactions at interfaces was confirmed by morphological and spectroscopic analyses. Here we conducted a comparative study of the dielectric performances of PmAP based nanocomposite films with pristine MWCNTs and c‐MWCNTs as fillers. Compared to PmAP/MWCNT nanocomposites, the PmAP/c‐MWCNT nanocomposites exhibited higher dielectric permittivity and lower dielectric loss. The well dispersed c‐MWCNTs in PmAP/c‐MWCNT nanocomposite produce huge interfacial area together with numerous active polarized centers (crystallographic defects), which in turn intensified the Maxwell‐Wagner‐Sillars (MWS) effect based on excellent molecular level interactions and thus, produce large dielectric permittivity (8810 at 1 kHz). The percolation threshold of PmAP/c‐MWCNT nanocomposites is found lower than that of the PmAP/MWCNT nanocomposites, which could be attributed to homogeneous distribution of c‐MWCNTs and strong c‐MWCNT//PmAP interfacial interactions in the nanocomposites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Multi-walled carbon nanotubes (MWCNT) have been used as fillers to improve thermal properties such as glass transition temperature (T g) of epoxy materials. In this work, nanocomposites based on diglycidyl ether of bisphenol A resin and triethylenetetramine (TETA) were prepared by a three-roll mill process with TETA-functionalized (MWCNT–COTETA) and neat MWCNT. Thermogravimetric analysis of the nanofillers showed that in the case of MWCNT–COTETA, there is a 15 % mass loss that can be attributed to –COTETA and residual oxygen-containing functional groups. The influence of chemical modification on the behavior of the glass T g was evaluated by dynamic scanning calorimetry. The MWCNT–COTETA allowed a ~20 °C reproducible increase of T g in concentrations in the range of 0.5–1.0 mass%. Furthermore, images obtained by scanning electron microscopy were used to investigate the morphology of the polymer matrix and its interfaces. The quality of the dispersion and interaction of the nanotubes in the epoxy matrix was assessed from the images. Both the neat epoxy and the nanocomposite with MWCNT showed low thermal shrinkage upon curing.  相似文献   

15.
In this study a series of multi-walled carbon nanotube (MWCNT)/Polyethylene (PE) composites with different kinds and several concentrations of carbon nanotubes (CNTs) were investigated. The morphology and degree of dispersion of the fillers in the polymer matrix at different length scales was investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Both individual and agglomerated MWCNTs were evident but a good dispersion was observed for some of them. TGA measurements were performed on nanocomposites in order to understand if CNTs affect the stabilization mechanism during thermal and oxidative degradation. The analysis demonstrates that MWCNTs presence slightly delays thermal volatilisation (15-20 °C) without modification of thermal degradation mechanism. In contrast, thermal oxidative degradation in air is delayed up to about 100 °C dependently from MWCNTs concentration, in the range used here (0.1-2.0 wt%), and degree of dispersion. The stabilization is due to the formation of a thin protective layer of entangled MWCNTs kept together by carbon char generated on the surface of the nanocomposites as shown by SEM images taken on degradation residues.  相似文献   

16.
Nanofibrous composite mats were prepared by electrospinning of poly(trimethylene terephthalate), PTT, with multi-walled carbon nanotubes (PTT/MWCNT). Trifluoroacetic acid (TFA) and methylene chloride (MC) with volume ratio of 50/50 is a good solvent for PTT and was used as the electrospining solution. Scanning electron microscopy was used to investigate the morphology of electrospun (ES) nanofibers with 0, 0.2, 1.0, or 2.0 wt% of MWCNTs. Crystal structure of the ES mats was determined from wide angle X-ray diffraction. Thermal properties were investigated using heat capacity measurements from differential scanning calorimetry (DSC) using the three-runs method for baseline correction, heat flow amplitude calibration, and sample heat capacity determination. A model comprising three phases, a mobile amorphous fraction (MAF), rigid amorphous fraction (RAF), and crystalline fraction (C), is appropriate for ES PTT/MWCNT fibers. The phase fractions, W i (for i = RAF, MAF or C) were determined by DSC. Crystallinity decreases very slightly with the amount of MWCNT. At the same time, a large increase in RAF was observed: W RAF of PTT fiber with 2% MWCNT is twice that of neat PTT fiber. The addition of MWCNTs enhanced the PTT chain alignment and increased RAF as a result. Changes of vibrational band absorbance at 1358 and 1385 cm−1, corresponding to characteristic groups, were obtained with infrared spectroscopy. The increased absorbance at 1358 cm−1 and decreased absorbance at 1385 cm−1, with the addition of MWCNTs, strongly supports the three-phase model for ES PTT/MWCNT nanocomposites.  相似文献   

17.
Multiwalled carbon nanotubes (MWCNT) were grafted with polystyrene by in situ nitroxide mediated radical polymerization in the presence of TEMPO (2,2,6,6-tetramethylpiperidinyl-1-oxyl) functionalized MWCNT, which was synthesized by the reaction between 4-hydroxyl-TEMPO (HO-TEMPO) and carbonyl chloride groups on the MWCNT. Although the controllability of the polymerization was not high, highly soluble grafted MWCNTs were indeed obtained, indicating that the graft polymerization was efficient. The resulting polystyrene grafted MWCNTs were easily defunctionalized at room temperature using 3-chloroperoxybenzioc acid. TEM, SEM, and TGA were employed to determine the structure, morphology, and the grafting quantities of the resulting products.  相似文献   

18.
NiO/multiwalled carbon nanotube (NiO/MWCNT) nanocomposites have been prepared and used for a Li–O2 battery cathode catalyst. Electrochemical measurements demonstrate that the batteries with NiO/MWCNT catalyst have a discharge capacity of 2,500 mAh g?1, a charge capacity of 2,100 mAh g?1, and a rechargeable ability performing better than Ketjenblack (KB) and MWCNTs. KB has the largest discharge capacity (2,700 mAh g?1) due to the highest surface area and pore volume but the worst charging behavior due to poor mass transport in the small-width pore (2.48 nm). MWCNTs have a much better charging performance owing to a larger pore width (8.93 nm) than carbon black. NiO/MWCNTs have the largest charge capacity because of the facilitated mass transport in the comparatively large pores (7.68 nm) and the increased catalytic ability produced by the NiO nanoparticles. These improvements are also responsible for the best cycle and rate performances of the nanocomposites among the three catalysts.  相似文献   

19.
Multiwalled carbon nanotube (MWCNT)–vanadium pentoxide (V2O5) nanocomposites have been fabricated using a facile and environmental friendly hydrothermal method without any pretreatment, surfactants, or chelate agents added. The as-annealed nanocomposites are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), and the results indicate that V2O5 nanoparticles grew on MWCNTs. As a cathode material for lithium batteries, it exhibits superior electrochemical performance compare to the pure V2O5 powders. A high specific discharge capacity of 253 mA h g?1 can be obtained for the 15 % MWCNT–V2O5 nanocomposite electrodes, which retains 209 mA h g?1 after 50 cycles. However, the pure V2O5 powder electrodes only possess a specific discharge capacity of 157 mA h g?1 with a capacity retention of 127 mA h g?1 after 50 cycles. Moreover, the MWCNT–V2O5 nanocomposite electrodes show an excellent rate capability with a specific discharge capacity of 180 mA h g?1 at the current rate of 4 C. The enhanced electrochemical performance of the nanocomposites is attributed to the formation of conductive networks by MWCNTs, and large surface areas of V2O5 nanoparticles grew on MWCNTs which stabilizes these nanoparticles against agglomeration.  相似文献   

20.
Hybrid membranes containing multi‐walled carbon nanotubes (MWCNTs) were initially prepared to separate benzene/cyclohexane mixtures. Subsequently, MWCNT surfaces were chemically modified using two methods to change the surface polarity of the MWCNTs and improve the distribution thereof in Poly(methylmethacrylate) (PMMA). This change consequently enhanced the separation performance of hybrid membranes with MWCNTs. Raman spectroscopy was used to characterize the structure of the pristine MWCNTs and the modified MWCNTs. The morphology and distribution of the MWCNTs in PMMA were investigated by transmission electron microscopy. The results showed that the addition of MWCNTs clearly improved the separation performance of the hybrid membranes. Surface modification introduced polar groups onto the MWCNT surface, which significantly improved the distribution of MWCNTs in the PMMA membranes and the performance of hybrid membranes. MWCNTs with higher surface polarity also increased the amount of MWCNTs distributed homogeneously in PMMA. Aminated MWCNTs (MWCNT‐NH2) showed the highest surface polarity. Thus, the content of MWCNT‐NH2 well distributed in PMMA was the highest among the three types of MWCNTs. The highest separation factor for the hybrid membranes with 1.0 wt% MWCNT‐NH2 was about seven times that of membranes containing pristine MWCNTs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号