首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Swift heavy ion beam irradiation induces modification in the dielectric properties and surface morphologies of polycarbonate (PC) films. The PC films were irradiated by 55 MeV energy of C5+ beam at various ions fluences ranging from 1 × 1011 to 1 × 1013 ions cm?2. The dielectric properties (i.e., dielectric constant, dielectric loss, and AC conductivity) and surface morphologies of pristine and SHI beam irradiated PC films were investigated by dielectric measurements, atomic force microscopy (AFM), and optical microscopy. The dielectric measurements show that the dielectric constant, dielectric loss, and AC conductivity increase with ion fluences and temperature, however, the dielectric constant and AC conductivity decrease while dielectric loss increases with frequency. AFM shows the increase in average roughness values with ion fluences. The change of color in PC films has been observed from colorless to yellowish and then dark brown with increases of ion fluence by using optical microscopy.  相似文献   

2.
Polymer composites with different concentrations of organometallics (ferric oxalate) dispersed PMMA were prepared. PMMA was synthesized by solution polymerization technique. These films were irradiated with 120 MeV Ni10+ ions in the fluence range 1011-5 × 1012 ions/cm2. The radiation induced modifications in dielectric properties, microhardness, structural changes and surface morphology of polymer composite films have been investigated at different concentrations of filler and ion-fluences. It was observed that electrical conductivity and hardness of the films increase with the concentration of the filler and also with the fluence. The dielectric constant (?) obeys the Universal law given by ?αfn−1. The dielectric constant/loss is observed to change significantly due to irradiation. This suggests that ion beam irradiation promotes the metal to polymer bonding and convert polymeric structure into hydrogen depleted carbon network. This makes the composites more conductive and harder. Surface morphology of the films has been studied using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The average surface roughness is observed to increase after irradiation as revealed by AFM studies. The SEM images show the blisters type of phenomenon on the surface due to ion beam irradiation.  相似文献   

3.
The effect of Xe+ bombardment on the surface morphology of four different polymers, polystyrene (PS), poly(phenylene oxide), polyisobutylene, and polydimethylsiloxane, was investigated in ion energy and fluence ranges of interest for secondary ion mass spectrometry depth‐profiling analysis. Atomic force microscopy (AFM) was applied to analyze the surface topography of pristine and irradiated polymers. AFM analyses of nonirradiated polymer films showed a feature‐free surface with different smoothness. We studied the influence of different Xe+ beam parameters, including the incidence angle, ion energy (660–4000 eV), current density (0.5 × 102 to 8.7 × 102 nA/cm2), and ion fluence (4 × 1014 to 2 × 1017 ion/cm2). Xe+ bombardment of PS with 3–4 keV at a high current density did not induce any change in the surface morphology. Similarly, for ion irradiation with lower energy, no surface morphology change was found with a current density higher than 2.6 × 102 nA/cm2 and an ion fluence up to 4 × 1016 ion/cm2. However, Xe+ irradiation with a lower current density and a higher ion fluence led to topography development for all of the polymers. The roughness of the polymer surface increased, and well‐defined patterns appeared. The surface roughness increased with ion irradiation fluence and with the decrease of the current density. A pattern orientation along the beam direction was visible for inclined incidence between 15° and 45° with respect to the surface normal. Orientation was not seen at normal incidence. The surface topography development could be explained on the basis of the balance between surface damage and sputtering induced by the primary ion beam and redeposition–adsorption from the gas phase. Time‐of‐flight secondary ion mass spectrometry analyses of irradiated PS showed strong surface modifications of the molecular structure and the presence of new material. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 314–325, 2001  相似文献   

4.
ZnO/NiO thin films, each of thickness 100 nm, were deposited on Si(100) substrate by pulsed laser deposition method. The resulting heterojunction, ZnO/NiO/Si, was irradiated by 120 MeV Au9+ ions and characterized by grazing incidence X‐ray diffraction (GIXRD), Raman spectroscopy, and atomic force microscopy (AFM). The GIXRD confirmed the presence of both NiO and ZnO in the samples. Ion irradiation induced suppression of crystalline nature, and the recrystallization of the same occurred at the fluence of 1 × 1013 ions cm−2. The occurrence of most intense band at 302 cm−1 in Raman spectra corresponds to the symmetric stretching vibration of ZnO. The linear shift of stretching mode of ZnO with ion fluence could be associated with the effect of compressive stress in the material. AFM analysis of the films indicated that the rms roughness increased when the film is irradiated at a fluence of 1 × 1012 ions cm−2. Beyond this fluence, the value of roughness decreased up to fluence of 1 × 1013 ions cm−2 and increased thereafter. To see the effect of the stress of buffer layer on the surface layer, we calculated the stress for NiO layer with ion fluence form the lattice parameter. Comparing the stress of buffer layer with roughness of surface layer at the given fluence, we can say that the compressive stress in the buffer layer could possibly control the roughness of the surface layer.  相似文献   

5.
In context to the ion induced surface nanostructuring of metals and their burrowing in the substrates, we report the influence of Xe and Kr ion‐irradiation on Pt:Si and Ag:Si thin films of ~5‐nm thickness. For the irradiation of thin films, several ion energies (275 and 350 keV of Kr; 450 and 700 keV of Xe) were chosen to maintain a constant ratio of the nuclear energy loss to the electronic energy loss (Sn/Se) in Pt and Ag films (five in present studies). The ion‐fluence was varied from 1.0 × 1015 to 1.0 × 1017 ions/cm2. The irradiated films were characterized using Rutherford backscattering spectroscopy (RBS), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The AFM and SEM images show ion beam induced systematic surface nano‐structuring of thin films. The surface nano‐structures evolve with the ion fluence. The RBS spectra show fluence dependent burrowing of Pt and Ag in Si upon the irradiation of both ion beams. At highest fluence, the depth of metal burrowing in Si for all irradiation conditions remains almost constant confirming the synergistic effect of energy losses by the ion beams. The RBS analysis also shows quite large sputtering of thin films bombarded with ion beams. The sputtering yield varied from 54% to 62% by irradiating the thin films with Xe and Kr ions of chosen energies at highest ion fluence. In the paper, we present the experimental results and discuss the ion induced surface nano‐structuring of Pt and Ag and their burrowing in Si. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Films of immiscible blends of (PS) and poly(methyl methacrylate) (PMMA) were characterized by contact-angle measurements with sessile drop and atomic force microscopy (AFM). These blends showed a linear dependence of the contact angles on the composition, as predicted by Cassie's equation for ideal surfaces. The surface structure investigated by AFM showed low roughness and phase-separation features. The ratio between the drop radius and the roughness amounted to the order of 104–105. This magnitude seemed to be sufficient to put the PS/PMMA films close to ideality. Upon sulfonation, the wettability and the microscopic surface roughness of the PS/PMMA blends increased. The treatment with sulfuric acid yielded sulfonated PS domains on the surface, causing an increase in the surface wettability. The SO3 groups were evidenced by X-ray photoelectron spectroscopy. The sulfonation of the PS/PMMA blends enables the formation of multiphase surfaces with hydrophobic, charged and polar domains. Received: 11 December 2000 Accepted: 6 April 2001  相似文献   

7.
We report the influence of 100 keV H+ ion beam irradiation on the surface morphology, crystalline structure, and transport properties of as‐deposited Al‐doped ZnO (Al:ZnO) thin films. The films were deposited on silicon (Si) substrate by using DC sputtering technique. The ion irradiation was carried out at various fluences ranging from 1.0 × 1012 to 3.0 × 1014 ions/cm2. The virgin and ion‐irradiated films were characterized by X‐ray diffraction, Raman spectroscopy, atomic force microscopy, and Hall probe measurements. Using X‐ray diffraction spectra, 5 points Williamson‐Hall plots were drawn to deduce the crystallite site and strain in Al:ZnO films. The analysis of the measurements shows that the films are almost radiation resistant in the structural deformation under chosen irradiation conditions. With beam irradiation, the transport properties of the films are also preserved (do not vary orders of magnitude). However, the surface roughness and the crystallite size, which are crucial parameters of the ZnO film as a gas sensor, are at variation with the ion fluence. As ion fluence increases, the root‐mean‐square surface roughness oscillates and the surface undergoes for smoothening with irradiation at chosen highest fluence. The crystallite size decreases initially, increases for intermediate fluences, and drops almost to the value of the pristine film at highest fluence. In the paper, these interesting experimental results are discussed in correlations with ion‐matter interactions especially energy losses by the ion beam in the material.  相似文献   

8.
Alloy thin films of CuIn(S0.4Se0.6)2 material were deposited using the solution growth technique. The various deposition parameters such as pH of solution, time, concentration of ions and temperature have been optimized for the device grade thin films. The as-deposited films were annealed in a rapid thermal annealing (RTA) system at 450 °C in air for 5 min and subjected to high-energy Ag ion irradiations. Ag ion irradiation has been performed with an energy of 100 MeV at a fluency of 5×1012 ions/cm2 on the thin film. The changes in optical and electrical properties that occurred before and after post-deposition treatments in CuIn(S0.4Se0.6)2 thin films were studied using X-ray diffraction (XRD) and AFM; increase in crystallinity was observed after annealing and irradiation. In addition, structural damages were observed in irradiated thin films. After annealing and irradiation, the surface roughness was seen to be increased. Decrease in resistivity was observed, which is consistent with the optical energy band gap. The results are explained by considering the high energy deposited due to the electronic energy loss upon irradiation, which modified the properties of the material.  相似文献   

9.
Poly(lactide-co-glycolide) (PLGA) films were irradiated by 180 MeV/amu Ag8+ ions and 50 MeV/amu Li3+ ions at different fluences of 5 × 1010, 5 × 1011 and 1 × 1012 ions/cm2. Modifications of polymer films induced by the swift heavy ions (SHI) irradiation were studied by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR) and UV–Vis spectroscopy. The dominant effect of the SHI beam irradiation is proposed to be chain scission which leads to breakage of polymer chains, followed by hydrogen abstraction. The results from FTIR spectroscopy showed that the intensity of all peaks of the irradiated samples decreased at high fluence of SHI, suggesting PLGA samples significantly degraded at high SHI fluence. The variation in optical band gap energy and Urbach energy with increasing fluence was calculated from UV–Vis spectroscopy and explained in terms of changes occurring in the polymer matrix. X-ray diffraction patterns also show appreciable changes in PLGA at high fluence. FESEM results revealed that the hydrophilicity of the PLGA surface increased with an increase in ion fluence. In this paper the optical, chemical and structural changes with different fluence rates are discussed.  相似文献   

10.
The present paper reports the investigation of surface morphology, elemental composition, phase changes and field emission properties of Si ion irradiated nickel (Ni) and titanium (Ti). The Ni and Ti targets have been irradiated with 500 keV Si ions generated by Pelletron accelerator at various fluences ranging from 6.9 × 1013 to 77.1 × 1013 ions/cm2. Stopping range of ions in matter analysis revealed higher values of electronic stopping and sputtering yield for Ni as compared with Ti. For both irradiated metals, electronic energy loss dominant over the nuclear stopping. The growth of induced surface structures have been analysed by using field emission scanning electron microscopy (FESEM) analysis. In case of Ni, as the ion fluence increases from 6.9 × 1013 to 65.8 × 1013 ions/cm2, the formation of spherical particulates, agglomers and sputtering is observed. Although in the case of Ti, with the increase of Si ion fluence from 11.6 × 1013 to 77.1 × 1013 ions/cm2, the formation of irregular-shaped particulates along with crater and sputtered channels is observed. X-ray diffraction (XRD) analysis shows that no new phase is identified. However, a significant increase in peak intensity is observed with increasing ion fluence. The variation in crystallite size and dislocation line density is also observed as a function of Si ion fluence. Fourier transform infrared spectroscopy analysis shows that no bands are formed after the Si ion irradiation. Field emission properties of ion-structured Ni and Ti are well correlated with the growth of surface structures observed by SEM and dislocation line density evaluated by XRD analysis.  相似文献   

11.
This paper reports that 60Co γ-ray irradiation can convert cis-polyphenylacetylene (cis-PPA) films prepared with rare-earth coordination catalysts to highly photosensitive materials. The dependence of the photosensitivity on irradiation dose, preparation methods, and microstructure of the PPA films has been investigated by means of a potential discharge technique. The photosensitivity was enhanced with increasing irradiation dose. The critical dose to produce a light response was 5 × 103 Gy. The maximum surface potential discharge rate was 618 V/s, and the dark decay was approximately 2 V/s for cis-PPA films irradiated with 60Co γ-ray (dose: 2 × 105 Gy). The cis-transoidal-PPA and an electrophotographic photoreceptor device incorporating cis-PPA showed a higher irradiation effect. The structure and properties of 60Co γ-ray irradiated rare-earth PPA films are similar to the unirradiated films.  相似文献   

12.
SnO2 thin films synthesized by sol-gel are irradiated with reactor neutrons up to fast neutron fluence of 9.6 × 1017 neutrons cm–2 at 40°C. The influence of defects generated by neutrons irradiation, through the properties modification, on the photo-catalytic activity of SnO2 films is investigated. It is found that the photoactivity of the irradiated films is enhanced after reactor neutrons irradiation. An improvement of 41% is observed for the sample irradiated at a neutron fluence of 9.6 × 1017 neutrons cm–2. This is attributed to several parameters modified by the reactor neutron irradiation principally the crystallite size and space charge region which are closely related to the photocatalytic performance.  相似文献   

13.
In this study, the simple and effective surface modification of polymers through ion irradiation is described to improve metal-to-polymer adhesion. The surface of polymer films was irradiated with 150 keV Xe+ ions at various fluences, and copper (Cu) was then deposited onto the surface-modified polymer films. The surface properties of the modified films were investigated in terms of their wettability, chemical composition, and surface morphology. The metal-to-polymer adhesion strength was estimated using a nano-indenter. As a result, the surface environment of the polymer films was physiochemically changed by ion irradiation, which could have a significant effect on the metal-to-polymer adhesion. The irradiated polymer films exhibited a higher adhesion strength than the control film, and the strength depended on the fluence. The maximum adhesion strength (8.45 mN) of the Cu deposited on the irradiated PEN films was obtained at a fluence of 5×1014 ions/cm2.  相似文献   

14.
Structural and electrical properties of HfO2 gate-dielectric metal-oxide-semiconductor (MOS) capacitors deposited by sputtering are investigated. The HfO2 high-k thin films have been deposited on p-type <100> silicon wafer using RF-Magnetron sputtering technique. The Ellipsometric, FTIR and AFM characterizations have been done. The thickness of the as deposited film is measured to be 35.38 nm. Post deposition annealing in N2 ambient is carried out at 350, 550, 750 °C. The chemical bonding and surface morphology of the film is verified using FTIR and AFM respectively. The structural characterization confirmed that the thin film was free of physical defects and root mean square surface roughness decreased as the annealing temperature increased. The smooth surface HfO2 thin films were used for Al/HfO2/p-Si MOS structures fabrication. The fabricated Al/HfO2/p-Si structure had been used for extracting electrical properties such as dielectric constant, EOT, interface trap density and leakage current density through capacitance voltage and current voltage measurements. The interface state density extracted from the GV measurement using Hill Coleman method. Sample annealed at 750 °C showed the lowest interface trap density (3.48 × 1011 eV−1 cm−2), effective oxide charge (1.33 × 1012 cm−2) and low leakage current density (3.39 × 10−9 A cm−2) at 1.5 V.  相似文献   

15.
Molybdenum (0.5 at%) doped indium oxide thin films deposited by spray pyrolysis technique were irradiated by 100 MeV O7+ ions with different fluences of 5×1011, 1×1012 and 1×1013 ions/cm2. Intensity of (222) peak of the pristine film was decreased with increase in the ion fluence. Films irradiated with the maximum ion fluence of 1×1013 ions/cm2 showed a fraction of amorphous nature. The surface microstructures on the surface of the film showed that increase in ion fluence decreases the grain size. Mobility of the pristine molybdenum doped indium oxide films was decreased from ~122 to 48 cm2/V s with increasing ion fluence. Among the irradiated films the film irradiated with the ion fluence of 5×1011 ions/cm2 showed relatively low resistivity of 6.7×10?4 Ω cm with the mobility of 75 cm2/V s. The average transmittance of the as-deposited IMO film is decreased from 89% to 81% due to irradiation with the fluence of 5×1011 ions/cm2.  相似文献   

16.
In this paper, high-k titanium–aluminum oxide (ATO) dielectric film has been realized by using organic–inorganic hybrid precursor solution. X-ray diffraction pattern revealed that the ATO films (Ti content less than 67 at%) remain amorphous phase for annealing treatment at 400 °C. And all of the amorphous ATO films had very smooth and uniform surface with root mean square (RMS) roughness of less than 0.5 nm. Meanwhile, the results showed that the ATO film (Ti:Al = 1:8) had the best performance, including RMS roughness of 0.33 nm, relative permittivity of 15, and leakage current density of 1.41 × 10?6 A/cm2 at 1 MV/cm.  相似文献   

17.
This paper applies multifractal spectrum theory to characterize the structural complexity of 3D surface roughness of copper (II) tetrasulfophthalocyanine (CuTsPc) films on the indium tin oxide (ITO) substrate, obtained with atomic force microscopy (AFM) analysis. CuTsPc films were prepared by drop cast method on ITO substrate. CuTsPc films surface roughness was studied by AFM in tapping‐mode?, in air, on square areas of 2500 µm2. A novel approach, on the basis of computational algorithms for analysis of 3D roughness surface applied for AFM data, was presented. Results revealed that the 3D surface roughness of CuTsPc films prepared by drop cast method on ITO substrate can be described using the multifractal geometry. The generalized dimensions Dq and the multifractal spectrum f(α) provided quantitative values that characterize the local scale properties of CuTsPc films surface geometry at nanometer scale. Data provide valuable information to describe the spatial arrangement of 3D surface roughness of CuTsPc films on ITO substrate, which was not taken into account by classical surface statistical parameters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
A novel catalytic adsorptive stripping chronopotentiometric (CC‐CAdSCP) procedure for the determination of Co(II) traces was developed using a lead film electrode (PbFE). The PbFE was generated in situ on a glassy carbon support from a 0.1 M ammonia buffer containing 1×10?5 M Pb(II), 6.5×10?5 M DMG and the target metals. An addition of 0.2 M NaBrO3 to the solution yielded an 11‐fold catalytic enhancement of chronopotentiometric response of the Co(II)‐DMG complex. The CC‐CAdSCP curves were well‐developed, sharp and reproducible (RSD 5.0 % for 5×10?9 M Co(II)). The limit of detection for Co(II) for 210 s of accumulation time was 4×10?10 M (0.024 µg L?1). In addition, the elaborated method allowed the simultaneous quantification of Co(II) and Ni(II) simultaneously.  相似文献   

19.
An organic/inorganic nanocomposite film was synthesized using poly(4‐vinylphenol) (PVPh) as an organic insulating polymer and PbO nanoparticles as a high‐k inorganic material to serve as an organic insulator with enhanced dielectric properties. PbO nanoparticles were dispersed into propylene glycol monomethyl ether acetate, and a solution of PbO/PVPh nanocomposite was prepared by adding a crosslinker. The PbO nanoparticle content within the PVPh polymer matrix was varied, and the effects of this variation upon the properties of the resulting nanocomposite films were studied, including the properties of surface morphology, surface bonding state and dielectric characteristic. The dielectric constant increased with increasing PbO content, reaching 9.2 at 1 MHz and with dielectric loss below 0.09 for the PbO content of 6 vol%. Furthermore, the leakage current increased to only 1.3 × 10?8 A cm?1 at the highest nanoparticle loadings, compared to the 7.2 × 10?9 of pristine PVPh. The addition of PbO nanoparticles was found to effectively suppress the absorption of moisture on the surface of PbO/PVPh nanocomposite, although it also increased surface roughness, owing to the agglomeration and particulation of PVPh arising from an anchoring effect of the PbO nanoparticles. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The aim of this article was to investigate the effects of electron irradiation in ultrahigh vacuum environment on the surface properties of high‐performance carbon/bismaleimide (BMI) composites used in aerospace. The changes in surface chemical composition with increasing irradiation fluence were studied by XPS. The evolution of surface morphology and surface roughness were observed by atomic force microscopy (AFM). The mass loss behavior occurring in the surface layer of the composites was examined. The results indicated that the electron irradiation in high vacuum caused rupture of chemical bonds and cross‐linking process in the surface layer, thereby leading to the mass loss behavior and the formation of carbonification layer in the surface of the carbon/BMI composites. The changes in the surface chemical composition were determined by a competing effect existing between the rupture of chemical bonds and the cross‐linking process at lower irradiation fluence, and by a degradation process only at higher fluence of electron irradiation. The surface morphology was altered and the surface roughness was increased significantly after electron irradiation. The mass loss ratio first increased obviously at lower fluences, and then reached a plateau value of 0.45% beyond 5 × 1015 cm?2 fluence of electron irradiation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号