首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
XAD copolymer resins may be functionalized with heavy metal ion-selective ligands either by covalent linkage to the polymer backbone or by impregnation. These resins may be tailored to be specific for certain heavy metals by adjusting the adsorption and elution parameters, thereby enabling simple and cost-effective spectrophotometric and flame atomic absorption spectrometry (FAAS) determinations of these metals without requiring the more sophisticated coupled instrumental techniques. For the synthesis of o-aminobenzoic acid (ABA)-immobilized XAD-4 copolymer resin that is expected to preconcentrate a number of transition and heavy metals, the azo-linkage method was chosen. For this purpose the copolymer was nitrated, reduced to the corresponding amine, converted to the diazonium salt with nitrite, and reacted with o-aminobenzoic acid to produce the XAD-ABA sorbent. This sorbent was capable of preconcentrating Pb(II), Cd(II), Ni(II), Co(II) and Zn(II) from weakly acidic or neutral aqueous solution. The retained metals were eluted with 1.0 M HNO3 from the resin column, and were subsequently determinated with by flame atomic absorption spectrometry. The developed resin preconcentration and determination method was successfully applied to the analysis of a synthetic metal mixture solution, a certified reference material (CRM) of coal sample, and brackish lake water.  相似文献   

2.
A new synthesized modified mesoporous silica (MCM-41) using 5-nitro-2-furaldehyde (fural) was applied as an effective sorbent for the solid phase extraction of uranium(VI) and thorium(IV) ions from aqueous solution for the measurement by inductively coupled plasma optical emission spectrometry (ICP OES). The influences of some analytical parameters on the quantitative recoveries of the analyte ions were investigated in batch method. Under optimal conditions, the analyte ions were sorbed by the sorbent at pH 5.5 and then eluted with 1.0 mL of 1.0 mol L−1 HNO3. The preconcentration factor was 100 for a 100 mL sample volume. The limits of detection (LOD) obtained for uranium(VI) and thorium(IV) were 0.3 μg L−1. The maximum sorption capacity of the modified MCM-41 was found to be 47 and 49 mg g−1 for uranium(VI) and thorium(IV), respectively. The sorbent exhibited good stability, reusability, high adsorption capacity and fast rate of equilibrium for sorption/desorption of uranium and thorium ions. The applicability of the synthesized sorbent was examined using CRM and real water samples.  相似文献   

3.
A magnetic sorbent with a multilayer shell of the composition Fe3O4@TEOS@CTAB@TEOS + MPTEOS designed for the simultaneous or sequential preconcentration of components of various nature is obtained. The conditions of microwave synthesis and modification of a new magnetic sorption material are described; its composition and particle sizes are characterized. The sorption capacity of the sorbent is provided by creating a mesoporous silica layer filled with cetyltrimethylammonium bromide (CTAB) micelles and additionally modified with an S-containing polymer (MPTEOS) on the surface of the magnetic carrier. The properties of the obtained material with respect to the regulated substances from two groups of priority pollutants are studied: phenols of various structures and heavy metals. The main sorption characteristics (effect of pH, phase contact time, nature of eluent, V: m, salt background) are studied and the conditions for extracting ecotoxicants at their concentration in the solution at a level of μg/L are optimized. The data obtained under the conditions of separate and simultaneous extraction of analytes of different nature confirmed a possibility of the quantitative determination of various types of natural water pollutants at the levels significantly lower than the MPC using a single sorption material. In using HPLC methods and electrothermal atomic absorption spectrometry, a complete analysis of a single sample takes 40?50 min and of a series of samples, 2–3 h. Such characteristics, combined with the simplicity of material preparation make it promising for routine analytical studies.  相似文献   

4.
Morin was successful as a chemical modifier to improve the reactivity of the nanometer SiO2 surface in terms of selective binding and extraction of heavy metal ions. This new functionalized nanometer SiO2 (nanometer SiO2-morin) was used as an effective sorbent for the solid-phase extraction (SPE) of Cd(II), Cu(II), Ni(II), Pb(II), Zn(II) in solutions prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of trace levels of metal ions were optimized with respect to different experimental parameters using static and dynamic procedures in detail. The pH 4.0 was chosen as the optimum pH value for the separation of metal ions on the newly sorbent. Complete elution of the adsorbed metal ions from the nanometer SiO2-morin was carried out using 2.0 mL of 0.5 mol L−1 of HCl. Common coexisting ions did not interfere with the separation and determination at pH 4.0. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 22.36, 36.8, 40.37, 33.21 and 25.99 mg metal/g SiO2-morin for Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II), respectively. The time for 95% sorption for Cu(II) and Ni(II) and 70% sorption for Cd(II), Pb(II) and Zn(II) was less than 2 min. The relative standard deviation (RSD) of the method under optimum conditions was lower than 5.0% (n = 11). The procedure was validated by analyzing the certified reference river sediment material (GBW 08301, China), the results obtained were in good agreement with standard values. The nanometer SiO2-morin was successfully employed in the separation and preconcentration of trace Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) from the biological and natural water samples yielding 75-folds concentration factor.  相似文献   

5.
The effect of chemical modification on the sorption properties of cotton cellulose toward Cu(II) and Ni(II) ions was studied. The modification was carried out in two stages: oxidation of cellulose with the formation of dialdehydocellulose, followed by its sulfonation. The optimal conditions for modifying the cellulose to produce a sorbent capable to remove effectively the heavy metal ions from aqueous solutions of corresponding salts were elucidated. The modified sorbent exceeds the native cellulose in the sorption capacity (in terms of sorption maximum) about 3 times, therewith the time of extraction of heavy metal ions is reduced from 45 to 8 min. The high sorption properties are defined by the formation of new sorption sites -SO3Na along with initially formed -COOH groups on the sorbent surface.  相似文献   

6.
A new functionalized mesoporous silica (MCM-41) using salicylaldehyde was utilized for the separation, preconcentration and determination of uranium in natural water by inductively coupled plasma atomic emission spectrometry (ICP-AES).Experimental conditions for effective adsorption of trace levels of U(VI) were optimized. The preconcentration factor was 100 (1.0 mL of elution for a 100 mL sample volume). The analytical curve was linear in the range 2-1000 μg L−1 and the detection limit was 0.5 ng mL−1. The relative standard deviation (R.S.D.) under optimum conditions was 2.5% (n = 10). Common coexisting ions did not interfere with the separation and determination of uranium at pH 5. The sorbent exhibited excellent stability and its sorption capacity under optimum conditions has been found to be 10 mg of uranium per gram of sorbent. The method was applied for the recovery and determination of uranium in different water samples.  相似文献   

7.
Zirconium phosphate (ZrP) has recently been demonstrated as an excellent sorbent for heavy metals due to its high selectivity, high thermal stability, and absolute insolubility in water. However, it cannot be readily adopted in fixed beds or any other flowthrough system due to the excessive pressure drop and poor mechanical strength resulting from its fine submicrometer particle sizes. In the present study a hybrid sorbent, i.e., polymer-supported ZrP, was prepared by dispersing ZrP within a strongly acidic cation exchanger D-001 and used for enhanced lead removal from contaminated waters. D-001 was selected as a host material for sorbent preparation mainly because of the Donnan membrane effect resulting from the nondiffusible negatively charged sulfonic acid group on the exchanger surface, which would enhance permeation of the targeted metal ions. The hybrid sorbent (hereafter denoted ZrP-001) was characterized using a nitrogen adsorption technique, scanning electron microscope (SEM), and X-ray diffraction (XRD). Lead sorption onto ZrP-001 was found to be pH dependent due to the ion-exchange mechanism, and its sorption kinetics onto ZrP-001 followed the pseudo-first-order model. Compared to D-001, ZrP-001 exhibited more favorable lead sorption particularly in terms of high selectivity, as indicated by its substantially larger distribution coefficients when other competing cations Na(+), Ca(2+), and Mg(2+) coexisted at a high level in solution. Fixed-bed column runs showed that lead sorption on ZrP-001 resulted in a conspicuous decrease of this toxic metal from 40 mg/L to below 0.05 mg/L. By comparison with D-001 and ZrP-CP (ZrP dispersion within a neutrally charged polymer CP), enhanced removal efficiency of ZrP-001 resulted from the Donnan membrane effect of the host material D-001. Moreover, its feasible regeneration by diluted acid solution and negligible ZrP loss during operation also helps ZrP-001 to be a potential candidate for lead removal from water. Thus, all the results suggested that ZrP-001 offers excellent potential for lead removal from contaminated water.  相似文献   

8.
The deformation of sorbent caused by the sorption is new method of quantitative investigation “in situ” of interaction in system host-quest. The deformation of PVP-PEG complex, ϕPEG=0.36 and ϕPEG=0.20 due to water sorption has been studied by the measuring of the relative elongation of the polymer samples and the isotherms of water sorption simultaneously. The investigation of the sorption deformation gives the possibility of direct estimation of polymer sample free volume and it's variation during sorption, also the variation of Gibbs energy of system due to sorption according to the vacancy solution theory. The glassy-plastic state transition of polymer during water sorption has been observed.  相似文献   

9.
The kinetics of sorption of uranium(VI) compounds from sulfate and carbonate solutions using four samples of mesoporous zirconium-silica nanosorbents obtained by bitemplate (solubilization) synthesis was studied. The sorption equilibrium set-in time and the kinetic characteristics of sorption were shown to depend on the sorbent (its composition, specific surface area, dispersity, and pore size), the temperature, and the composition and pH of the solution from which uranium compounds are sorbed. The sorption kinetics was described by a first-order equation. The limiting stage of the process was found to be the external diffusion of uranium-containing particles to the sorbent surface.  相似文献   

10.
The effect of sorbent consumption and the kinetics and mechanism of sorption of uranium(VI) compounds on the surface of FIBAN A-6 fibrous anion exchanger from aqueous uranyl acetate solutions have been studied in the presence of sulfuric acid or sodium hydrocarbonate. The degree of sorption of uranium(VI) compounds by FIBAN A-6 anion exchanger has been found to be as high 97.0–99.5% at an interfacial contact time of 3–7 min and a sorbent consumption of 2–5 g/dm3. Diffusion and chemical kinetics models have been employed to show that the sorption kinetics of uranyl sulfate and carbonate complexes corresponds to the mixed diffusion mechanism and is described by a pseudo-second-order equation. The sorption isotherms of uranium(VI) compounds have the pattern of L-type isotherms according to the Giles classification and are satisfactorily described by the Langmuir, Freundlich, and Dubinin–Radushkevich equations. It has been found that, within 40 min, the sorbent may be regenerated by 65–82% with a 1 M NaHCO3 solution.  相似文献   

11.
A new chelating sorbent for metal ions was prepared by modification of chemically modified silica – LiChroprep-NH2 with Calcon. The molecular mechanism of binding this reagent to the surface of the applied carrier is presented. The properties of this sorbent were compared to analogous sorbents with a plain silica carrier and chemically modified silicas – LiChroprep-RP containing Calcon. The advantages of the new sorbent compared to the silica and LiChroprep-RP chelating sorbents are demonstrated. The sorbent obtained was applied as stationary phase in solid-phase extraction (SPE) for separations of some chosen mixtures of metal ions and for additional purification of aqueous solutions of salts of alkali metals from trace amounts of heavy metals. The multiple use of the sorbent based on LiChroprep-NH2 in sorption-desorption processes of metal ions without deterioration of its sorption capacity is demonstrated.  相似文献   

12.
A new functionalized nanometer mesoporous silica (MCM-41) using 2,4-dihydroxybenzaldehyde (4-OHsal) was applied as an effective sorbent for solid phase extraction (SPE) of beryllium ions from aqueous solution followed by inductively coupled plasma optical emission spectrometric detection (ICP OES). The influences of some analytical parameters on the quantitative recoveries of the analyte ion were investigated in batch method. In order to perform the batch mode of SPE, known amount of sorbent was added to a test tube containing sample solution buffered at pH 7.2. After manual shaking and centrifugation the aqueous phase was decanted and beryllium was desorbed by adding 1.0 mL of 1.0 mol L?1 HNO3 to the sedimented sorbent. The sorbent was separated by centrifugation and the concentration of beryllium in the supernatant was determined by ICP OES. The maximum sorption capacity of the modified MCM-41 was found to be 34 mg g?1. The sorbent exhibited good stability, reusability and fast rate of equilibrium for sorption/desorption of beryllium ions. The present method was used for preconcentration and determination of beryllium for water samples. Under optimal conditions, the limit of detection (LOD) obtained was 0.3 ng L?1. The accuracy of the procedure was evaluated by analysis of the certified reference material (NIST 1640).  相似文献   

13.
Interaction of dolomite thermally treated at 800°C with solutions of mono-, di-, and trisubstituted sodium phosphate was studied. It was shown that thermally treated dolomite binds 0.75 to 3.0 mmol g–1 of phosphorus, depending on the nature of a phosphating reagent, and the interaction mostly occurs with magnesium oxide, which enables use of this kind of dolomite as a sorbent of phosphate ions. It was found that the nature of the phosphating reagent affects the chemical and phase composition of the materials obtained, as well as their sorption properties with respect to heavy metal ions. The products formed in acid-free phosphation of dolomite have high sorption capacity, from 1.5 to 6.8 mmol g–1 for Pb2+, Zn2+, Cu2+, Cd2+, Ni2+, Sr2+, and Co2+ ions, which enables their use as effective sorbents for heavy metal ions.urning.  相似文献   

14.
This paper reports silica gel loaded with p-tert-butylcalix[8]arene as a new solid phase extractor for determination of trace level of uranium. Effective extraction conditions were optimized in column methods prior to determination by spectrophotometry using arsenazo(III). The results showed that U(VI) ions can be sorbed at pH 6 in a mini-column and quantitative recovery of U(VI) (>95–98%) was achieved by stripping 0.4 mol L−1 HCl. The sorption capacity of the functionalized sorbent is 0.072 mmol uranium(VI) g−1 modified silica gel. The relative standard deviation and detection limit were 1.2% (n = 10) for 1 μg uranium(VI) mL−1 solution and 0.038 μg L−1, respectively. The method was employed to the preconcentration of U(VI) ions from spiked ground water samples.  相似文献   

15.
We report that magnetic multiwalled carbon nanotubes functionalized with 8-aminoquinoline can be applied to the preconcentration of Cd(II), Pb(II) and Ni(II) ions. The parameters affecting preconcentration were optimized by a Box-Behnken design through response surface methodology. Three variables (extraction time, magnetic sorbent amount, and pH value) were selected as the main factors affecting sorption, and four variables (type, volume and concentration of the eluent; elution time) were selected for optimizing elution. Following sorption and elution, the ions were quantified by FAAS. The LODs are 0.09, 0.72, and 1.0 ng mL?1 for Cd(II), Ni(II), and Pb(II) ions, respectively. The relative standard deviations are <5.1 % for five separate batch determinations at 30 ng mL?1 level of Cd(II), Ni(II), and Pb(II) ions. The sorption capacities (in mg g?1) of this new sorbent are 201 for Cd(II), 150 for Pb(II), and 172 Ni(II). The composite was successfully applied to the rapid extraction of trace quantities of heavy metal ions in fish, sediment, soil, and water samples.
Figure
A schematic diagram for synthesis of functionalized magnetic multiwalled carbon nanotube.  相似文献   

16.
Amberchrom CG-300m, a styrene acrylic ester polymer resin, was studied for the first time as sorbent for metal ion sorption in a solid-phase extraction system. The polymer sorbent was modified via impregnation with dithizone to improve its efficiency. Efficiency of the modified sorbent improved by more than 47%. The loading capacity of the resin is 3.2 mg dithizone per gram of sorbent. The mechanisms of Cd(II) sorption from aqueous solutions are presented. Capacity of the modified resin for Cd(II) was investigated in batch experiments as a function of pH, initial metal ion concentration, temperature and time. Maximum capacity of 0.551 mg Cd(II) per gram of sorbent was achieved. The dimensionless separation factor, 0 < RL < 1, associated with the Langmuir isotherm (at T = 294 K) signifies sorption of Cd(II) was favorable, as do negative values of free energy of sorption (ΔG) at temperatures exceeding 293 K. Sorption was endothermic (ΔH > 0) while ΔS > 0 reflects the affinity of the sorbent towards Cd(II). The pseudo-second order model proved to be the best fit model for Cd(II) sorption kinetics data. Particle-diffusion models suggest sorption follows film as well as pore diffusion mechanisms.  相似文献   

17.
Uranium is one of the most hazardous heavy metal due to its long half-life radioactivity, high toxicity and mobility as aqueous uranyl ion (UO2 2+) under ordinary environmental conditions. Herein, amino functionalized SBA-15 (APSS) was developed as a rapid and efficient sorbent for removal of U(VI) from the environment. The APSS sample was synthesized by grafting method and was characterized by SEM, NMR, SAXS, and N2 sorption/desorption isothermal experiments. The sorption of U(VI) by APSS was investigated under different conditions of pH, contact time, initial U(VI) concentration, ionic strength and solid–liquid ratio. The results show that the sorption of U(VI) by APSS is strongly dependent on pH but independent of ionic strength and solid–liquid ratios (m/V). The sorption is ultrafast with an equilibrium time of less than 30 min, and the sorption capacity is as large as 409 mg/g at pH 5.3 ± 0.1. Besides, the U(VI) sorption by APSS from extremely diluted solution and the desorption of U(VI) from APSS were also studied. It is found that 100 mg of APSS can almost completely remove the U(VI) ions from 4 L aqueous solution with the U(VI) concentration as low as 4.2 ppb and the sorbed U(VI) can be completely desorbed by 0.1 mol/L nitric acid. The results strongly reveal the high performance of the APSS material in the removal and preconcentration of U(VI) from the aqueous solution.  相似文献   

18.
The sorption behaviour of three kinds of macrocyclic sorbents – amidoamine tetradodecyloxyphenylencalix[4]resorcinarene 1 and tetramethyloxyphenylencalix[4]-resorcinarene 2; composition of calix[4]resorcinarene 1+2, and novel P.1 and P.2 polymers with amidoamine calix[4]resorcinarene units towards three water-soluble azo dyes – methyl orange (MO), acid orange (AO5) and Congo red (CR) was studied. All sorbents form supramolecular complexes with the aforesaid dyes. The best sorbent for MO was shown to be polymer P.1, for the AO5 – composition 1+2 and for the CR – macrocycle 2, with high sorption capacities (373, 497 and 625 mg/g, respectively). The main factor in the binding of dyes by all studied sorbents proved to be surface electrostatic interactions. In addition to the Coulomb interactions, the most important factor for the polymers appeared to be the ‘net’ structure of the polymer with a high concentration of binding sites, providing electrostatic, hydrogen, dipole–dipole and hydrophobic interaction. Hydrophobic substituents in the sorbents exert a significant influence on the dye sorption. The increase of the sorbents' hydrophobicity leads to a lower sorption capacity for MO and CR and a higher sorption capacity for AO5. It was shown that sorption efficiency of the sorbent depends on the ‘dye–sorbent’ structure conformity.  相似文献   

19.

Novel sorbent, chitosan impregnated calcium alginate (Cal-Alg-Chi) bead was developed to sorb uranium from potable water without compromising water quality parameters. The uptake study in batch mode, showed more than 98% sorption of uranium in the concentration range of 0.1–50 µg mL−1. Cal-Alg-Chi beads, reduced the concentration of uranium below 15 ng mL−1 from 100 to 450 ng mL−1 in groundwater collected from effected regions in India. Sorption isotherm followed Langmuir model and maximum sorption capacity was evaluated as 36.04 mg g−1. The sorption was endothermic with ΔG 0 value of −9.76 kJ mol−1 and kinetics followed pseudo-second order rate law.

  相似文献   

20.
A 3-D cadmium-based coordination polymer, [CdCl2L]n (1) (where L = 1,1-(1,6-hexanediyl)bis(1,3-dihydro-3-methyl-1H-imidazole-2-thione), was synthesized and structurally characterized. The capability of the polymer as an efficient sorbent for Congo red (CR) removal from aqueous solution has been evaluated. Compound 1 has a tetrahedral arrangement with a CdS2Cl2 core. L in 1 is bidentate to two neighboring CdII centers via the methimidazole sulfurs to create 1D chains propagating along the c-axis. The remaining coordination sites are occupied by two terminal chlorides. The chains are further stabilized by intermolecular C–H?Cl hydrogen bonds between the chlorides and hydrogens of the imidazole rings. Parallel chains stack in the 3-D structure. The CdII polymer sorbent was characterized by infrared spectroscopy, elemental analysis, UV–vis, solid fluorescence and X-ray single-crystal diffraction. Sorption kinetics were studied by three kinetic models, second order, Elovich and intraparticle diffusion. The results indicate that the mechanism of the sorption process followed Elovich kinetic model. Sorption equilibrium was also studied with Langmuir, Temkin, and Freundlich isotherm models. The sorption process followed the Temkin isotherm. MIC, MBC, and DNA cleavage activities of 1 were also studied. Furthermore, the UV–vis and solid state fluorescence spectra of 1 were measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号