首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A new diamine containing isopropylidene, methyl substituted arylene ether, and trifluoromethyl groups, 2,2‐bis[4‐(2‐trifluoromethyl‐4‐aminophenoxy)‐3,5‐dimethylphenyl]propane (BTADP), was synthesized and used in preparation of a series of polyimides by direct polycondensation with various aromatic tetracarboxylic dianhydrides in N, N‐dimethylacetamide (DMAc). All polymers derived from diamine (BTADP) with trifluoromethyl substituents were highly organosoluble in the solvents, like N‐methyl‐2‐pyrrolidinone (NMP), N,N‐dimethylacetamide, N,N‐dimethylformamide (DMF), pyridine, chloroform, tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), dichloromethane, cyclohexanone, and γ‐butyrolactone at room temperature or upon heating at 70 °C. Inherent viscosities of the polyimides were found to range between 0.58 and 0.97 dL·g?1. These polyimides had glass transition temperatures between 256 and 307 °C, and their 10% mass loss temperatures ranged from 440 to 462 °C and 421 to 443 °C under nitrogen and air, respectively. These polyimides had low dielectric constants in the range of 2.84–3.09. All the polyimides could be cast into films from DMAc solutions and were thermally converted into color lightness, optically transparent, flexible, and tough polyimides. The polyimide films had a tensile strength in the range of 83–97 MPa and a tensile modulus in the range of 2.0–2.2 GPa. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5766–5774, 2004  相似文献   

2.
A new phosphorus‐containing aromatic diamine, 1,4‐bis(4‐aminophenoxy)‐2‐(6‐oxido‐6H‐dibenz[c,e] [1,2]oxaphosphorin‐6‐yl) phenylene ( 3 ) was synthesized by the nucleophilic aromatic substitution of 2‐(6‐oxido‐6H‐dibenz[c,e] [1,2]oxaphosphorin‐6‐yl)‐1,4‐dihydroxy phenylene ( 1 ) with 4‐fluoronitrobenzene, followed by catalytic hydrogenation. Light color, flexible, and creasable polyimides with high molecular weight, high glass transition, high thermal stability, improved organosolubility, and good oxygen plasma resistance were synthesized from the condensation of ( 3 ) with various aromatic dianhydrides in N,N‐dimethylacetamide, followed by thermal imidization. The number‐average molecular weights of polyimides are in the range of 7.0–8.3 × 104 g/mol, and the weight‐average molecular weights are in the range of 12.5–16.5 × 104 g/mol. The Tgs of these polyimides range from 230 to 304 °C by differential scanning calorimetry and from 228 to 305 °C by DMA. These polyimides are tough and flexible, with tensile strength at around 100 MPa. The degradation temperatures (Td 5%) and char yields at 800 °C in nitrogen range from 544 to 597 °C and 59–65 wt %, respectively. Polyimides 5c and 5e , derived from OPDA and 6FDA, respectively, with the cutoff wavelength of 347 and 342 μm, respectively, show very light color. These polyimides also exhibit good oxygen plasma resistance. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2897–2912, 2007  相似文献   

3.
Herein we present the preparation and characterization of three new bispyrazolyl‐based energetic compounds with great potential as explosive materials. The reaction of sodium 4‐amino‐3,5‐dinitropyrazolate ( 5 ) with dimethyl iodide yielded bis(4‐amino‐3,5‐dinitropyrazolyl)methane ( 6 ), which is a secondary explosive with high heat resistance (Tdec=310 °C). The oxidation of this compound afforded bis(3,4,5‐trinitropyrazolyl)methane ( 7 ), which is a combined nitrogen‐ and oxygen‐rich secondary explosive with very high theoretical and estimated experimental detonation performance (Vdet (theor)=9304 m s?1 versus Vdet(exp)=9910 m s?1) in the range of that of CL‐20. Also, the thermal stability (Tdec=205 °C) and sensitivities of 7 are auspicious. The reaction of 6 with in situ generated nitrous acid yielded the primary explosive bis(4‐diazo‐5‐nitro‐3‐oxopyrazolyl)methane ( 8 ), which showed superior properties to those of currently used diazodinitrophenol (DDNP).  相似文献   

4.
Diamine 3,3‐bis[4‐(4‐aminophenoxy)‐3‐methylphenyl]phthalide (BAMP) was derived from the o‐cresolphthalein, and then it was polycondensated with various aromatic dicarboxylic acids and dianhydrides to synthesize polyamides (PAs) and polyimides (PIs), respectively. PAs have inherent viscosities of 0.78–2.24 dL/g. Most of the PAs are readily soluble in a variety of solvents such as DMF, DMAc, and NMP and afforded transparent and tough films from DMAc solutions. The cast films have tensile strengths of 75–113 MPa as well as initial moduli of 1.71–2.97 GPa. These PAs have glass transition temperatures (Tgs) in the range of 242–325°C, 10% weight loss temperatures occur up to 473°C, and char yields are between 57 and 64% at 800°C in nitrogen. PIs were first synthesized to form polyamic acids (PAAs) by a two‐stage procedure that included a ring‐opening reaction, followed by thermal or chemical conversion to polyimides. Inherent viscosities of PAAs are between 0.71 and 1.63 dL/g. Most of the PIs obtained through the chemical cyclodehydration procedure are soluble in NMP, o‐chlorophenol, m‐cresol, etc., and they have inherent viscosities of 0.58–1.32 dL/g. Tgs of these PIs are in the range of 270–305°C and show 10% weight loss temperatures up to 477°C. PIs obtained through the thermal cyclodehydration procedure have tensile strengths of 72–142 MPa, elongations at break of 8–19%, and initial moduli of 1.80–2.72 GPa. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 455–464, 1999  相似文献   

5.
A new unsymmetrical diamine monomer containing two trifluoromethyl (CF3) groups is prepared from 2‐bromo‐5‐nitro‐1,3‐bis(trifluoromethyl)benzene. The monomer is polymerized with typical dianhydrides, in this case PMDA, BPDA, BTDA, ODPA, and 6‐FDA, using a one‐pot synthetic method to obtain corresponding polyimides. All of the prepared polyimides are readily soluble in many organic solvents and can be solution‐cast into transparent, flexible, and tough films. These films have a UV–vis absorption cut‐off wavelength at 340–375 nm and light transparencies of 87–91% at a wavelength of 550 nm. Incorporation of two CF3 groups unsymmetrically into rigid polyimides improves their solubility and transparencies without decreasing their physical properties. The polymers exhibit high thermal stability with 5% weight loss at temperatures ranging from 534 to 593 °C in nitrogen and from 519 to 568 °C in air, and high glass transition temperatures (Tg) above > 300 °C depending on their molecular structures. They also have a coefficient of thermal expansion (CTE) value of 46–69 ppm/°C. In addition, they show low refractive indices in the range of 1.535–1.602 at a wavelength of 633 nm due to the unsymmetrical incorporation effect of the two CF3 groups. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4413–4422  相似文献   

6.
A new bis(ether anhydride), 3,3′,5,5′‐tetramethyl‐2,2‐bis[4‐(4‐dicarboxyphenoxy)phenyl]propane dianhydride ( 3 ), was prepared in three steps: the nitro displacement of 4‐nitrophthalonitrile with 2,2‐bis(4‐hydroxy‐3,5‐dimethylphenyl)propane, the alkaline hydrolysis of the intermediate bis(ether dinitrile), and the subsequent dehydration of the resulting bis(ether diacid). A series of new highly soluble poly(ether imide)s with tetramethyl and isopropylidene groups were prepared from the bis(ether anhydride) 3 with various diamines by a conventional two‐stage synthesis including polyaddition and chemical cyclodehydration. The resulting poly(ether imide)s had inherent viscosities of 0.54–0.73 dL g?1. Gel permeation chromatography measurements revealed that the polymers had number‐average and weight‐average molecular weights of up to 54,000 and 124,000, respectively. All the polymers showed typical amorphous diffraction patterns. All of the poly(ether imide)s showed excellent solubility and were readily dissolved in various solvents such as N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide, N,N‐dimethylformamide, pyridine, cyclohexanone, tetrahydrofuran, and even chloroform. Most of the polymers could be dissolved with chloroform concentrations as high as 30 wt %. These polymers had glass‐transition temperatures of 244–282 °C. Thermogravimetric analysis showed that all polymers were stable, with 10% weight losses recorded above 463 °C in nitrogen. These transparent, tough, and flexible polymer films were obtained through solution casting from N,N‐dimethylacetamide solutions. These polymer films had tensile strengths of 81–102 MPa and tensile moduli of 1.8–2.0 GPa. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2556–2563, 2002  相似文献   

7.
A new diamine monomer containing fluorene unit, 3,5‐diamino‐N‐(9H‐fluoren‐2‐yl)benzamide was successfully synthesized via the condensation of 2‐aminofluorene and 3,5‐dinitrobenzoyl chloride and subsequent reduction of the dinitro compound. A series of novel aromatic polyimides having pendent fluorenamide moieties were prepared from the reaction of the diamine monomer and various tetracarboxylic dianhydrides by a conventional two‐step polymerization process. The polyimides were obtained in quantitative yields with inherent viscosities of 0.33–0.44 dl/g. The resulting polymers dissolved in N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfoxide. The glass transition temperature of these polymers was in the range of 261–289°C. They were fairly stable up to a temperature around 450°C and lost 10% weight in the range of 498–556°C in nitrogen. The UV–vis absorption spectra showed that all of the polymers had absorption maxima around 320 nm. Cyclic voltammograms of the polyimides revealed an oxidation wave with a peak around 1.3 V. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
A novel, trifluoromethyl‐substituted, bis(ether amine) monomer, 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)naphthalene, was synthesized through the nucleophilic displacement of 2‐chloro‐5‐nitrobenzotrifluoride with 1,4‐dihydroxynaphthalene in the presence of potassium carbonate in dimethyl sulfoxide, followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of new fluorine‐containing polyimides with inherent viscosities of 0.57–0.91 dL/g were prepared by reacting the diamine with six commercially available aromatic dianhydrides via a conventional, two‐step thermal or chemical imidization method. Most of the resulting polyimides were soluble in strong polar solvents such as N‐methylpyrrolidone and N,N‐dimethylacetamide (DMAc). All the polyimides afforded transparent, flexible, and strong films with good tensile properties. These polyimides exhibited glass‐transition temperatures (Tg's) (by DSC) and softening temperatures (by thermomechanical analysis) in the ranges of 252–315 and 254–301 °C, respectively. Decomposition temperatures for 5% weight loss all occurred above 500 °C in both air and nitrogen atmospheres. The dielectric constants of these polyimides ranged from 3.03 to 3.71 at 1 MHz. In addition, a series of new, fluorinated polyamides with inherent viscosities of 0.32–0.62 dL/g were prepared by the direct polycondensation reaction the diamine with various aromatic dicarboxylic acids by means of triphenyl phosphite and pyridine. All the polyamides were soluble in polar solvents such as DMAc and could be solution‐cast into tough and flexible films. These polyamides had Tg's between 228 and 256 °C and 10% weight‐loss temperatures above 400 °C in nitrogen or air. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2377–2394, 2004  相似文献   

9.
Two novel diamine monomers, 1,4‐bis (4‐aminophenoxy)‐2‐[(3′,5′‐ditrifluoromethyl)phenyl]benzene and 1,4‐bis [2′‐cyano‐3′(4″‐amino phenoxy)phenoxy]‐2‐[(3′,5′‐ditrifluoromethyl)phenyl] benzene, were synthesized from (3,5‐ditrifluoromethyl)phenylhydroquinone. A series of ditrifluoromethylated aromatic polyimides derived from the diamines were prepared through a typical two‐step polymerization method. These polyimides had a high thermal stability, and the temperatures at 10% weight loss were above 507 °C in nitrogen. Most of the polymers showed good solubility in anhydrated 1‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, chloroform, and tetrahydrofuran at room temperature. All the polymers formed transparent, strong, and flexible films with tensile strengths of 63.6–95.8 MPa, elongations at break of 5–10%, and Young's moduli of 2.38–2.96 GPa. The dielectric constants estimated from the average refractive indices are 2.69–2.89. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3018–3029, 2005  相似文献   

10.
A novel structurally asymmetric bis(ether amine) monomer containing trifluoromethyl groups, 1,7‐bis(4‐amino‐2‐trifluoromethylphenoxy)naphthalene, was prepared through the nucleophilic substitution reaction of 2‐chloro‐5‐nitrobenzotrifluoride and 1,7‐dihydroxynaphthalene in the presence of potassium carbonate in N‐methyl‐2‐pyrrolidone (NMP), followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of new fluorine‐containing polyimides were synthesized from the diamine with various commercially available aromatic tetracarboxylic dianhydrides using a two‐stage process with thermal or chemical imidization method. The intermediate poly(amic acid)s had inherent viscosities between 0.93 and 1.93 dL/g. Most of the polyimides obtained from both routes were readily soluble in many organic solvents such as NMP and N,N‐dimethylacetamide (DMAc). All the polyimides could afford transparent, flexible, and strong films with low moisture absorptions of 0.29–0.69%, low dielectric constants of 2.81–3.23 at 10 kHz, and an ultraviolet‐visible absorption cutoff wavelength at 358–423 nm. The glass‐transition temperatures (Tgs) (by DSC) and softening temperatures (by thermomechanical analysis) of the polyimides were recorded in the range of 222–271 °C and 210–266 °C, respectively. Decomposition temperatures for 10% weight loss all occurred above 500 °C in both nitrogen and air atmospheres. For a comparative study, some properties of the present polyimides will be compared with those of structurally related ones derived from 1,7‐bis(4‐aminophenoxy)naphthalene and 1,5‐bis(4‐amino‐2‐trifluoromethylphenoxy)naphthalene. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1756–1770, 2009  相似文献   

11.
A novel triaryl imidazole‐containing diamine, 3,5‐diamino‐N‐(4‐(4,5‐diphenyl‐1H‐imidazol)phenyl)benzamide, was successfully synthesized via the condensation of 4‐(4,5‐diphenyl‐1H‐imidazol)benzenamine and 3,5‐dinitrobenzoyl chloride, followed by reduction of the dinitro compound. A series of new aromatic polyimides with pendent triaryl imidazole moieties were prepared from the reaction of this diamine with various tetracarboxylic dianhydrides by a conventional two‐step polymerization process via thermal and chemical imidizations. The polyimides were obtained in quantitative yields with inherent viscosities of 0.21–0.44 dL/g. All the polymers are readily soluble in polar organic solvents. Flexible and strong films of polyimides were obtained by solution casting. The glass transition temperature of these polymers was in the range of 261–264°C. They were fairly stable up to a temperature around 300°C and lost 10% weight at 408°C under nitrogen. The ultraviolet–visible absorption spectra showed that all of the polymers had absorption maxima around 320 nm with a fluorescence emission maxima around 388–407 nm in N‐methyl‐2‐pyrrolidinone solution. Cyclic voltammograms of the polyimides revealed an oxidation wave with a peak around 1.7 V. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Four bis(ether anhydride)s, 4,4′‐(1,4‐phenylenedioxy)diphthalic anhydride (IV), 4,4′‐(2,5‐tolylenedioxy)‐diphthalic anhydride (Me‐IV), 4,4′‐(2‐chloro‐1,4‐phenylenedioxy)diphthalic anhydride (Cl‐IV), and 4,4′‐(2,5‐biphenylenedioxy)diphthalic anhydride (Ph‐IV), were prepared in three steps starting from the nucleophilic nitrodisplacement reaction of 4‐nitrophthalonitrile with the potassium phenoxides of hydroquinone and various substituted hydroquinones such as methylhydroquinone, chlorohydroquinone, and phenylhydroquinone in N,N‐dimethylformamide, followed by alkaline hydrolysis and dehydration. Four series of poly(ether imide)s were prepared from bis(ether anhydride)s with various aromatic diamines by a classical two‐step procedure. The inherent viscosities of the intermediate poly(amic acid)s were in the range of 0.40–2.63 dL/g. Except for those derived from p‐phenylenediamine and benzidine, almost all the poly(amic acid)s could be solution‐cast and thermally converted into transparent, flexible, and tough polyimide films. Introduction of the chloro or phenyl substituent leads to a decreased crystallinity and an increased solubility of the polymers. The glass transition temperatures (Tg) of these polyimides were recorded in the range of 204–263°C. In general, the methyl‐ and chloro‐substituted polyimides exhibited relatively higher Tgs, whereas the phenyl‐substituted ones exhibited slightly lower Tgs compared to the corresponding nonsubstituted ones. Thermogravimetric analysis (TG) showed that 10% weight loss temperatures of all the polymers were above 500°C either in nitrogen or in air. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 665–675, 1999  相似文献   

13.
A new monomer, 2,6‐bis(4‐phenoxybenzoyl)naphthalene (BPOBON), was easily synthesized via simple synthetic procedures from readily available materials. A series of novel poly(aryl ether ketone)s containing both 2,6‐naphthylene moieties and amide linkages in the main chains were prepared by the Friedel‐Crafts acylation solution copolycondensation of isophthaloyl chloride with a mixture of BPOBON and N,N'‐bis(4‐phenoxybenzoyl)‐1,4‐phenylenediamine (BPBPPD), over a wide range of BPOBON/BPBPPD molar ratios, in the presence of anhydrous AlCl3 and N‐methylpyrrolidone in 1,2‐dichloroethane. All the polymers are semicrystalline and had remarkably increased Tgs over the conventional PEEK and PEKK due to the incorporation of naphthalene and amide linkages in the main chains. The polymers with 50–70 mol% BPOBON had not only high Tgs of 179–186 °C, but also moderate Tms of 321–328 °C, which are very suitable for the melt processing. These polymers had tensile strengths of 101.5–107.1 MPa, Young's moduli of 2.13–2.39 GPa, and elongations at break of 11.8–13.7% and exhibited excellent thermal stability and good resistance to organic solvents. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
A series of organosoluble aromatic polyimides (PIs) was synthesized from 5,5′‐bis[4‐(4‐aminophenoxy)phenyl]‐4,7‐methanohexahydroindan (3) and commercial available aromatic dianhydrides such as 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride (ODPA), 4,4′‐sulfonyl diphthalic anhydride (SDPA), or 2,2′‐bis(3,4‐dicarboxyphenyl) hexafluoropropanic dianhydride (6FDA). PIs (IIIc–f), which were synthesized by direct polymerization in m‐cresol, had inherent viscosities of 0.83–1.05 dL/g. These polymers could easily be dissolved in N,N′‐dimethylacetamide (DMAc), N‐methyl‐2‐pyrrolidone (NMP), N,N‐dimethylformamide (DMF), pyridine, m‐cresol, and dichloromethane. Whereas copolymerization was proceeded with equivalent molar ratios of pyromellitic dianhydride (PMDA)/6FDA, 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA)/6FDA, or BTDA/SDPA, or ½ for PMDA/SDPA, copolyimides (co‐PIs), derived from 3 and mixed dianhydrides, were soluble in NMP. All the soluble PIs could form transparent, flexible, and tough films, and they showed amorphous characteristics. These films had tensile strengths of 88–111 MPa, elongations at break of 5–10% and initial moduli of 2.01–2.67 GPa. The glass transition temperatures of these polymers were in the range of 252–311°C. Except for IIIe, the 10% weight loss temperatures (Td) of PIs were above 500°C, and the amount of carbonized residues of the PIs at 800°C in nitrogen atmosphere were above 50%. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1681–1691, 1999  相似文献   

15.
This work reports the synthesis and characterization of diamantane‐based polyimides obtained from 4,9‐bis[4(3,4‐dicarboxyphenoxy)phenyl]diamantane dianhydride and various aromatic diamines. Interestingly, the diamantane‐based polyimides were very stable to hydrolysis. This novel polyimide exhibits a low dielectric constant (2.65–2.77), low moisture absorption (<0.67%), good solubility, high Tg and unusually high thermal stability. Dynamic mechanical analysis (DMA) reveals that the diamantane‐based polyimides have high Tg ranging from 281 to 379 °C. The high‐temperature β1 subglass transition around 285 °C was observed in polyimide 6a derived from 2,2′‐bis(trifluoromethyl)benzidine. This class of novel diamantane‐based polyimide is very promising for electronic applications, because of its good mechanical properties, good thermal stability, low dielectric constant, excellent hydrolytic resistance, and low moisture absorption. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1673–1684, 2009  相似文献   

16.
A novel aromatic diamine monomer, 3,3′‐diisopropyl‐4,4′‐diaminodiphenyl‐3′′,4′′‐difluorophenylmethane (PAFM), was successfully synthesized by coupling of 2‐isopropylaniline and 3,4‐difluorobenzaldehyde. The aromatic diamine was adopted to synthesize a series of fluorinated polyimides by polycondensation with various dianhydrides: pyromellitic dianhydride (PMDA), 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride (ODPA) and 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) via the conventional one‐step method. These polyimides presented excellent solubility in common organic solvents, such as N,N‐dimethylformamide (DMF), N,N‐dimethyl acetamide (DMAc), dimethyl sulfoxide (DMSO), N‐methyl‐2‐pyrrolidone (NMP), chloroform (CHCl3), tetrahydrofuran (THF) and so on. The glass transition temperatures (Tg) of fluorinated polyimides were in the range of 260–306°C and the temperature at 10% weight loss in the range of 474–502°C. Their films showed the cut‐off wavelengths of 330–361 nm and higher than 80% transparency in a wavelength range of 385–463 nm. Moreover, polymer films exhibited low dielectric properties in the range of 2.76–2.96 at 1 MHz, as well as prominent mechanical properties with tensile strengths of 66.7–97.4 MPa, a tensile modulus of 1.7–2.1 GPa and elongation at break of 7.2%–12.9%. The polymer films also showed outstanding hydrophobicity with the contact angle in the range of 91.2°–97.9°.  相似文献   

17.
Starting from 3,5‐diamino benzoic acid, 2‐hydroxy propyl[3,5‐bis{(benzoxycarbonyl)imino}]benzyl ether, an AB2‐type blocked isocyanate monomer with flexible ether group, and 2‐hydroxy propyl[3,5‐bis{(benzoxycarbonyl)imino}]benzoate, an AB2‐type blocked isocyanate monomer with ester group, were synthesized for the first time. Using the same starting compound, 3,5‐bis{(benzoxycarbonyl)imino}benzylalcohol, an AB2‐type blocked isocyanate monomer, was synthesized through a highly efficient short‐cut route. Step‐growth polymerization of these monomers at individually optimized experimental conditions results in the formation of hyperbranched polyurethanes with and without ether and ester groups. Copolymerizations of these monomers with functionally similar AB monomers were also carried out. The molecular weights of the polymers were determined using GPC and the values (Mw) were found to vary from 1.5 × 104 to 1.2 × 106. While hyperbranched polyurethanes having no ether or ester group were found to be thermally stable up to 217 °C, hyperbranched poly(ether–urethane)s and poly(ester–urethane)s were found to be thermally stable up to 245 and 300 °C, respectively. Glass transition temperature (Tg) of polyurethane was reduced significantly when introducing ether groups into the polymer chain, whereas Tg was not observed even up to 250 °C in the case of poly(ester–urethane). Hyperbranched polyurethanes derived from all the three different AB2 monomers were soluble in highly polar solvents and the copolymers showed improved solubility. Polyethylene glycol monomethyl ether of molecular weight 550 and decanol were used as end‐capping groups, which were seen to affect the thermal, solution, and solubility properties of polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3877–3893, 2007  相似文献   

18.
In this study, new monomers having siloxane groups were synthesized as an intermediate for preparation of siloxane modified polyimide polymers. Then with these monomers, the synthesis of uncrosslinked and crosslinked polyimide–siloxane hybrid polymer membranes were achieved. The purposes of the preparation of modified polyimides were to modify the thermal and chemical stability, and mechanical strength of polyimides, and to improve the gas separation properties of polymers. The new diamine monomer having siloxane groups was prepared from 3,5‐diaminobenzoic acid (3,5‐DABA) and 3‐aminopropyltrimethoxysilane (3‐APTMS) in N‐methyl‐2‐pyrollidone (NMP) at 180°C. The modified polyimide membranes having different amount of siloxane groups were synthesized from pyromellitic dianhydride (PMDA), 4,4‐oxydianiline (ODA), and 3,5‐diaminobenzamido‐N‐propyltrimethoxy silane (DABA/PTMS) in NMP using a two‐step thermal imidization process. The synthesis of modified polyimide membranes were characterized by Fourier transform infrared spectroscopy (FTIR). The thermal analysis of the polyimides were carried out by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Water absorption and swelling experiments were also carried out for the investigation of structural properties of polymers. FTIR observations confirmed that the polyimide membranes with new diamine intermediate were successfully obtained. Thermal analysis showed that the uncrosslinked copolyimides exhibited two glass transition temperatures, indicating that they were separated microphases and it was found that all the modified copolyimides had showed higher glass transition temperature (Tg) than unmodified polyimides. The separation properties of the prepared polyimide membranes were also characterized by permeability for O2 and N2 gases and ideal selectivity values were calculated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A series of polyimides containing ether and ketone moieties were synthesized from 1,3‐bis(4‐fluorobenzoyl) benzene and several commercially available dianhydrides via a conventional two‐step polymerization. The inherent viscosities of Polyamide acids ranged from 0.46 to 0.73 dL/g. Thermal properties, mechanical properties, and thermalplasticity of the obtained polimide films were investigated by focusing on the chemical structures of their repeat units. These films were amorphous, flexible, and transparent. All films displayed low Tgs (184–225 °C) but also excellent thermal stability, the 5% weight loss temperature was up to 542 °C under nitrogen. The films showed outstanding mechanical properties with the modulus up to 3.0 GPa and the elongation at break in the range of 8–160%. The uniaxial stretching of PI‐a at high temperature was studied owing to its excellent flexibility. The PI‐a had an elongation at break up to 1600% at 245 °C and the uniaxially stretched film exhibited a much higher modulus (3.9 GPa) and strength (240 MPa) than undrawn film. The results indicated that PI‐a can potentially be used to prepare materials such as fiber, ultra‐thin film or ultra‐high modulus film. All the obtained films also demonstrated excellent thermoplasticity (drop of E′ at Tg > 103) which made the polyimides more suitable for melt processing. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2878–2884, 2010  相似文献   

20.
The mono‐arylpyridyl bromides are very useful key intermediates that can be further functionalized to generate bioactive compounds. It is possible to obtain mono‐arylation products of 3,5‐dibromopyridine with high preferentiality and high yields by air‐ and moisture‐stable palladacycle (catalyst II ) catalyzed Suzuki reaction of 3,5‐dibromopyridine with a series of arylboronic acids—ester under the conditions of K2CO3–toluene–methanol (4:1, v/v), reflux (75 °C), 5.6 equiv. of 3,5‐dibromopyridine with the ratio (mono:bis) ranging from of 99:1 to 90:10. This new method could also be used to easily achieve pyridyl? pyridyl bond formation to afford 3‐bromo‐5‐pyridylpyridine ( 3j ). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号