首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of trans-[(C(6)F(5))(p-tol(3)P)(2)PtCl] (PtCl) and butadiyne (cat. CuI, HNEt(2)) gives trans-[(C(6)F(5))(p-tol(3)P)(2)Pt(Ctbond;C)(2)H] (PtC(4)H, 81 %), which reacts with excess HC(triple bond)CSiEt(3) under Hay coupling conditions (O(2), cat. CuCl/TMEDA, acetone) to yield PtC(6)Si (53 %). A solution of PtC(6)Si in acetone is treated with wet nBu(4)NF to generate PtC(6)H. The addition of ClSiMe(3) (F(-) scavenger) and then excess HC(triple bond)CSiEt(3) under Hay conditions gives PtC(8)Si (39 %). Hay homocouplings of PtC(4)H, PtC(6)H, and PtC(8)H (generated in situ analogously to PtC(6)H) yield PtC(8)Pt, PtC(12)Pt, and PtC(16)Pt (97-92 %). Reactions of PtC(4)H and PtC(6)H with PtCl (cat. CuCl, HNEt(2)) give PtC(4)Pt and PtC(6)Pt (69 %, 34 %). The attempted conversion of PtC(8)H to PtC(10)Si affords mainly PtC(16)Pt, with traces of PtC(20)Pt and PtC(24)Pt. The complexes PtC(x)Pt are exceedingly stable (dec pts 234 to 288 degrees C), and Et(3)P displaces p-tol(3)P to give the corresponding compounds Pt'C(8)Pt' and Pt'C(12)Pt' (94-90 %). The effect of carbon chain lengths upon IR nu(C(triple bond)C) patterns (progressively more bands), UV/Vis spectra (progressively red-shifted and more intense bands with epsilon >600 000 M(-1) cm(-1)), redox properties (progressively more difficult and less reversible oxidations), and NMR values are studied, and analyzed with respect to the polymeric sp carbon allotrope "carbyne". The crystal structure of PtC(12)Pt shows a dramatic, unprecedented degree of chain bending, whereas the chains in PtC(8)Pt, Pt'C(12)Pt', and PtC(16)Pt are nearly linear.  相似文献   

2.
Stimulated by the recent observation of the first C(56)Cl(10) chlorofullerene (Science, 2004, 304, 699), we performed a systematic density functional study of the structures and properties of C(56)Cl(10) and related compounds. The fullerene derivatives C(56)Cl(8) and C(56)Cl(10) based on the parent fullerene C(56)(C(2v):011), rather than those from the most stable C(56) isomer with D(2) symmetry, are predicted to possess the lowest energies, and they are highly aromatic. Further investigations show that the heats of formation of the C(56)Cl(8) and C(56)Cl(10) fullerene derivatives are highly exothermic, that is, -48.59 and -48.89 kcal mol(-1) per Cl(2) (approaching that of C(50)Cl(10)), suggesting that adding eight (or ten) Cl atoms releases much of the strain of pure C(56)(C(2v):011) fullerene and leads to highly stable derivatives. In addition, C(56)Cl(8) and C(56)Cl(10) possess large vertical electron affinities, especially for C(56)Cl(8) with value of 3.20 eV, which is even larger than that (3.04 eV) of C(50)Cl(10), indicating that they are potential good electron acceptors with possible photonic/photovoltaic applications. Finally, the (13)C NMR chemical shifts and infrared spectra of C(56)Cl(8) and C(56)Cl(10) are simulated to facilitate future experimental identification.  相似文献   

3.
The reaction of [CpRu(PPh(3))(2)Cl] (1) with half an equivalent of P(4) or P(4)S(3) in the presence of AgCF(3)SO(3) as chloride scavenger affords the stable dimetal complexes [{CpRu(PPh(3))(2)}(2)(micro,eta(1:1)-P(4))][CF(3)SO(3)](2).3 CH(2)Cl(2) (2) and [{CpRu(PPh(3))(2)}(2)(micro,eta(1:1)-P(apical)-P(basal)-P(4)S(3))][CF(3)SO(3)](2).0.5 C(7)H(8) (3), in which the tetrahedral P(4) and mixed-cage P(4)S(3) molecules are respectively bound to two CpRu(PPh(3))(2) fragments through two phosphorus atoms. The coordinated cage molecules, at variance with the free ligands, readily react with an excess of water in THF under mild conditions. Among the hydrolysis products, the new, remarkably stable complexes [{CpRu(PPh(3))(2)}(2)(micro,eta(1:1)-P(2)H(4))][CF(3)SO(3)](2) (4) and [CpRu(PPh(3))(2)(eta(1)-PH(2)SH)]CF(3)SO(3) (8) were isolated. In the former, diphosphane, P(2)H(4), is coordinated to two CpRu(PPh(3))(2) fragments, and in the latter thiophosphinous acid, H(2)PSH, is coordinated to the metal centre through the phosphorus atom. All compounds were characterised by elemental analyses and IR and NMR spectroscopy. The crystal structures of 2, 3, 4 and 8 were determined by X-ray diffraction.  相似文献   

4.
(1)H, (19)F, (13)C, (15)N, and (17)O NMR chemical shifts and (1)H-(1)H, (1)H-(19)F, (1)H-(13)C, (19)F-(13)C, and (19)F-(15)N coupling constants are reported for 2-(trifluoromethyl)-2-oxazoline.  相似文献   

5.
The new borates Fe(II)(6)B(22)O(39)·H(2)O (colourless) and Co(II)(6)B(22)O(39)·H(2)O (dichroic: red/bluish) were synthesised under the high-pressure/high-temperature conditions of 6 GPa and 880 °C (Fe)/950 °C (Co) in a Walker-type multi-anvil apparatus. The compounds crystallise in the orthorhombic space group Pmn2(1) (Z=2) with the lattice parameters a=771.9(2), b=823.4(2), c=1768.0(4) pm, V=1.1237(4) nm(3), R(1)=0.0476, wR(2)=0.0902 (all data) for Fe(6)B(22)O(39)·H(2)O and a=770.1(2), b=817.6(2), c=1746.9(4) pm, V=1.0999(4) nm(3), R(1)=0.0513, wR(2)=0.0939 (all data) for Co(6)B(22)O(39)·H(2)O. The new structure type of M(6)B(22)O(39)·H(2)O (M=Fe, Co) is built up from corner-sharing BO(4) tetrahedra and BO(3) groups, the latter being distorted and close to BO(4) tetrahedra if additional oxygen atoms of the neighbouring BO(4) tetrahedra are considered in the coordination sphere. This situation can be regarded as an intermediate state in the formation of edge-sharing tetrahedra. The structure consists of corrugated multiple layers interconnected by BO(3)/BO(4) groups to form Z-shaped channels. Inside these channels, iron and cobalt show octahedral (M1, M3, M4, M5) and strongly distorted tetrahedral (M2, M6) coordination by oxygen atoms. Co(II)(6)B(22)O(39)·H(2)O is dichroic and the low symmetry of the chromophore [Co(II)O(4)] is reflected by the polarised absorption spectra (Δ(t)=4650 cm(-1), B=878 cm(-1)).  相似文献   

6.
A cyanide-bridged molecular square of [Ru(II) (2)Fe(II) (2)(mu-CN)(4)(bpy)(8)](PF(6))(4).CHCl(3).H(2)O, abbreviated as [Ru(II) (2)Fe(II) (2)](PF(6))(4), has been synthesised and electrochemically generated mixed-valence states have been studied by spectroelectrochemical methods. The complex cation of [Ru(II) (2)Fe(II) (2)](4+) is nearly a square and is composed of alternate Ru(II) and Fe(II) ions bridged by four cyanide ions. The cyclic voltammogram (CV) of [Ru(II) (2)Fe(II) (2)](PF(6))(4) in acetonitrile showed four quasireversible waves at 0.69, 0.94, 1.42 and 1.70 V (vs. SSCE), which correspond to the four one-electron redox processes of [Ru(II) (2)Fe(II) (2)](4+) right arrow over left arrow [Ru(II) (2)Fe(II)Fe(III)] (5+) right arrow over left arrow [Ru(II) (2)Fe(III) (2)](6+) right arrow over left arrow [Ru(II)Ru(III)Fe(III) (2)](7+) right arrow over left arrow [Ru(III) (2)Fe(III) (2)](8+). Electrochemically generated [Ru(II) (2)Fe(II)Fe(III)](5+) and [Ru(II) (2)Fe(III) (2)](6+) showed new absorption bands at 2350 nm (epsilon =5500 M(-1) cm(-1)) and 1560 nm (epsilon =10 500 M(-1) cm(-1)), respectively, which were assigned to the intramolecular IT (intervalence transfer) bands from Fe(II) to Fe(III) and from Ru(II) to Fe(III) ions, respectively. The electronic interaction matrix elements (H(AB)) and the degrees of electronic delocalisation (alpha(2)) were estimated to be 1090 cm(-1) and 0.065 for the [Ru(II) (2)Fe(II)Fe(III) (2)](5+) state and 1990 cm(-1) and 0.065 for the [Ru(II) (2)Fe(III) (2)](6+) states.  相似文献   

7.
The reactions of [N(3)P(3)Cl(6)] with one, two, or three equivalents of the difunctional 1,2-closo-carborane C(2)B(10)H(10)[CH(2)OH](2) and K(2)CO(3) in acetone have been investigated. These reactions led to the new spiro-closo-carboranylphosphazenes gem-[N(3)P(3)Cl(6-2n)[(OCH(2))(2)C(2)B(10)H(10)](n)] (n=1 (1), 2 (2)) and the first fully carborane-substituted phosphazene gem-[N(3)P(3)[(OCH(2))(2)C(2)B(10)H(10)](3)] (3). A bridged product, non-gem-[N(3)P(3)Cl(4)[(OCH(2))(2)C(2)B(10)H(10)]] (4), was also detected. The reaction of the well-known spiro derivatives [N(3)P(3)Cl(2)(O(2)C(12)H(8))(2)] and [N(3)P(3)Cl(4)(O(2)C(12)H(8))] with the same carborane-diol and K(2)CO(3) in acetone gave the new compounds gem-[N(3)P(3)(O(2)C(12)H(8))(3-n)[(OCH(2))(2)C(2)B(10)H(10)](n)] (n=1 (5) or 2 (6), respectively), without signs of intra- or intermolecularly bridged species. Upon treatment with NEt(3) in acetone, compound 5 was converted into the corresponding nido-carboranylphosphazene. However, the reaction of gem-[N(3)P(3)(O(2)C(12)H(8))(2)[(OCH(2))(2)C(2)B(10)H(10)]] (5) with NEt(3) in ethanol instead of acetone proceeded in a different manner to give the new compound (NHEt(3))(2)[N(3)P(3)(O(2)C(12)H(8))(2)(O)[OCH(2)C(2)B(9)H(10)CH(2)OCH(2)CH(3)]] (7). For compounds with two 2,2'-dioxybiphenyl units, gem-[N(3)P(3)(O(2)C(12)H(8))(2)[(OCH(2))(2)C(2)B(10)H(10)]] (5), (NHEt(3))[N(3)P(3)(O(2)C(12)H(8))(2)[(OCH(2))(2)C(2)B(9)H(10)]] (8), and (NHEt(3))(2)[N(3)P(3)(O(2)C(12)H(8))(2)(O)[OCH(2)C(2)B(9)H(10)CH(2)OCH(2)CH(3)]] (7), a mixture of different stereoisomers may be expected. However, for 5 and 7 only the meso compounds seem to be formed, with the same (R,S)-configuration as in the precursor [N(3)P(3)Cl(2)(O(2)C(12)H(8))(2)]. The reaction of 5 to give 8 seems to proceed with a change of configuration at one phosphorus center, giving a racemic mixture. The crystal structures of the nido-carboranylphosphazenes 7 and 8 have been confirmed by X-ray diffraction methods.  相似文献   

8.
We report the synthesis and characterization of five novel Mo-containing polyoxometalate (POM) bisphosphonate complexes with nuclearities ranging from 4 to 12 and with fully reduced, fully oxidized, or mixed-valent (Mo(V), Mo(VI)) molybdenum, in which the bisphosphonates bind to the POM cluster through their two phosphonate groups and a deprotonated 1-OH group. The compounds were synthesized in water by treating [Mo(V)(2)O(4)(H(2)O)(6)](2+) or [Mo(VI)O(4)](2-) with H(2)O(3)PC(C(3)H(6)NH(2))OPO(3)H(2) (alendronic acid) or its aminophenol derivative, and were characterized by single-crystal X-ray diffraction and (31)P NMR spectroscopy. (NH(4))(6)[(Mo(V)(2)O(4))(Mo(VI)(2)O(6))(2)(O(3)PC(C(3)H(6)NH(3))OPO(3))(2)]·12H(2)O (1) is an insoluble mixed-valent species. [(C(2)H(5))(2)NH(2)](4)[Mo(V)(4)O(8)(O(3)PC(C(3)H(6)NH(3))OPO(3))(2)]·6H(2)O (2) and [(C(2)H(5))(2)NH(2)](6)[Mo(V)(4)O(8)(O(3)PC(C(10)H(14)NO)OPO(3))(2)]·18H(2)O (4) contain similar tetranuclear reduced frameworks. Li(8)[(Mo(V)(2)O(4)(H(2)O))(4)(O(3)PC(C(3)H(6)NH(3))OPO(3))(4)]·45H(2)O (3) and Na(2)Rb(6)[(Mo(VI)(3)O(8))(4)(O(3)PC(C(3)H(6)NH(3))OPO(3))(4)]·26H(2)O (5) are alkali metal salts of fully reduced octanuclear and fully oxidized dodecanuclear POMs, respectively. The activities of 2-5 (which are water-soluble) against three human tumor cell lines were investigated in vitro. Although 2-4 have weak but measurable activity, 5 has IC(50) values of about 10 μM, which is about four times the activity of the parent alendronate molecule on a per-alendronate basis, which opens up the possibility of developing novel drug leads based on Mo bisphosphonate clusters.  相似文献   

9.
A new family of endohedral fullerenes, based on an encaged trithulium nitride (Tm(3)N) cluster, was synthesised, isolated and characterised by HPLC, mass spectrometry, and visible-NIR and FTIR spectroscopy. Tm(3)N clusterfullerenes with cages as small as C(76) and as large as C(88) were prepared and six of them were isolated. Tm(3)N@C(78) is a small clusterfullerene. The two isomers of Tm(3)N@C(80) (I and II) were the most abundant structures in the fullerene soot. Tm(3)N@C(82), Tm(3)N@C(84), and Tm(3)N@C(86) represent a new series of higher clusterfullerenes. All six isolated Tm(3)N clusterfullerenes were classified as large energy-gap structures with optical energy gaps between approximately 1.2 and approximately 1.75 eV. Tm(3)N@C(80) (I) and Tm(3)N@C(80) (II) were assigned to the C(80) cages C(80):7 (I(h)) and C(80):6 (D(5h)). For Tm(3)N@C(78), the analysis pointed to an elliptical carbon cage with C(78):1 (D(3)) or C(78):4 (D(3h)) being the probable structures.  相似文献   

10.
本文报道了新化合物N,N'-二(芳磺酰)亚磺酰胺-S-(2-苯并咪唑基)钠(a~e)以及N,N'-二(芳磺酰)亚磺酰胺-S-(2-苯并咪唑基) (f~i)的合成. 通过在感光乳剂中的应用,我们发现a,b,和c具有超增感作用, 它们分别使卤化银乳剂的感光度提高62% , 22% 和 45%.  相似文献   

11.
Two new intermetallic compounds, Yb(2)Ga(4)Ge(6) and Yb(3)Ga(4)Ge(6), were obtained from reactions in molten Ga. A third compound, Eu(3)Ga(4)Ge(6), was produced by direct combination of the elements. The crystal structures of these compounds were studied by single-crystal X-ray diffraction. Yb(2)Ga(4)Ge(6) crystallizes in an orthorhombic cell with a=4.1698(7), b=23.254(4), c=10.7299(18) A in the polar space group Cmc2(1). The structure of RE(3)Ga(4)Ge(6) is monoclinic, space group C2/m, with cell parameters a=23.941(6), b=4.1928(11), c=10.918(3) A, beta=91.426(4) degrees for RE=Yb, and a=24.136(2), b=4.3118(4), c=11.017(1) A, beta=91.683(2) degrees for RE=Eu. The refinement [I>2 sigma(I)] converged to the final residuals R(1)/wR(2)=0.0229/0.0589, 0.0411/0.1114, and 0.0342/0.0786 for Yb(2)Ga(4)Ge(6), Yb(3)Ga(4)Ge(6), and Eu(3)Ga(4)Ge(6), respectively. The structures of these two families of compounds can be described by a Zintl concept of bonding, in which the three-dimensional [Ga(4)Ge(6)](n-) framework serves as a host and electron sink for the electropositive RE atoms. The structural relation of RE(3)Ga(4)Ge(6) to of Yb(2)Ga(4)Ge(6) lies in a monoclinic distortion of the orthorhombic cell of Yb(2)Ga(4)Ge(6) and reduction of the [Ga(4)Ge(6)] network by two electrons per formula unit. The results of theoretical calculations of the electronic structure, electrical transport data, and thermochemical and magnetic measurements are also reported.  相似文献   

12.
The double salts Rb(3)[Mo(6)Br(i) (7)Y(i)Br(a) (6)](Rb(3)[MoBr(6)])(3) (Y=Se, Te) result from the partial disproportionation of the Mo(6)Br(12) octahedral-cluster-based bromide, in the presence of corresponding chalcogenides and RbBr salt (crystal data: Rb(12)[MoBr(6)](3)[Mo(6)Br(i) (7)Te(i)Br(a) (6)] (1), Pm$\bar 3$m (No. 221), a=12.1558(2) A, Z=1, R(1)=0.028; wR(2)=0.050; Rb(12)[MoBr(6)](3)[Mo(6)Br(i) (7)Se(i)Br(a) (6)] (2), Pm$\bar 3$m, a=12.144(3) A, Z=1, R(1)=0.028; wR(2)=0.050). The structures of 1 and 2 are built up from [Mo(III)Br(6)](3-) complexes and [Mo(6)Br(i) (7)Y(i)Br(a) (6)](3-) cluster units characterised by a random distribution of seven bromine and one chalcogen ligands on all the eight inner positions that face cap the Mo(6) clusters. Such a distribution implies a static orientational disorder of the [Mo(6)Br(i) (7)Y(i)Br(a) (6)](3-) units around the origin of the unit cell. Close-packed anionic layers based on [Mo(III)Br(6)](3-) complexes and [Mo(6)Br(i) (7)Y(i)Br(a) (6)](3-) cluster units are stacked in the sequence ABC. This arrangement leads to very short Br(a)--Br(a) intercluster unit distances of 3.252 A, much lower than the sum of the van der Waals radii (3.70 A). The trivalent oxidation state of molybdenum in the Mo complexes and 24 valence electrons per Mo(6) cluster have been confirmed by magnetic susceptibility measurements. Salts 1 and 2 constitute the first examples of structurally characterised bromides containing discrete [Mo(III)Br(6)](3-) complexes obtained by means of solid-state synthesis.  相似文献   

13.
The ethene derivatives [(eta(5)-C(5)R(5))RuX(C(2)H(4))(PPh(3))] with R=H and Me, which have been prepared from the eta(3)-allylic compounds [(eta(5)-C(5)R(5))Ru(eta(3)-2-MeC(3)H(4))(PPh(3))] (1, 2) and acids HX under an ethene atmosphere, are excellent starting materials for the synthesis of a series of new halfsandwich-type ruthenium(II) complexes. The olefinic ligand is replaced not only by CO and pyridine, but also by internal and terminal alkynes to give (for X=Cl) alkyne, vinylidene, and allene compounds of the general composition [(eta(5)-C(5)R(5))RuCl(L)(PPh(3))] with L=C(2)(CO(2)Me)(2), Me(3)SiC(2)CO(2)Et, C=CHCO(2)R, and C(3)H(4). The allenylidene complex [(eta(5)-C(5)H(5))RuCl(=C=C=CPh(2))(PPh(3))] is directly accessible from 1 (R=H) in two steps with the propargylic alcohol HC triple bond CC(OH)Ph(2) as the precursor. The reactions of the ethene derivatives [(eta(5)-C(5)H(5))RuX(C(2)H(4))(PPh(3))] (X=Cl, CF(3)CO(2)) with diazo compounds RR'CN(2) yield the corresponding carbene complexes [(eta(5)-C(5)R(5))RuX(=CRR')(PPh(3))], while with ethyl diazoacetate (for X=Cl) the diethyl maleate compound [(eta(5)-C(5)H(5))RuCl[eta(2)-Z-C(2)H(2)(CO(2)Et)(2)](PPh(3))] is obtained. Halfsandwich-type ruthenium(II) complexes [(eta(5)-C(5)R(5))RuCl(=CHR')(PPh(3))] with secondary carbenes as ligands, as well as cationic species [(eta(5)-C(5)H(5))Ru(=CPh(2))(L)(PPh(3))]X with L=CO and CNtBu and X=AlCl(4) and PF(6), have also been prepared. The neutral compounds [(eta(5)-C(5)H(5))RuCl(=CRR')(PPh(3))] react with phenyllithium, methyllithium, and the vinyl Grignard reagent CH(2)=CHMgBr by displacement of the chloride and subsequent C-C coupling to generate halfsandwich-type ruthenium(II) complexes with eta(3)-benzyl, eta(3)-allyl, and substituted olefins as ligands. Protolytic cleavage of the metal-allylic bond in [(eta(5)-C(5)H(5))Ru(eta(3)-CH(2)CHCR(2))(PPh(3))] with acetic acid affords the corresponding olefins R(2)C=CHCH(3). The by-product of this process is the acetato derivative [(eta(5)-C(5)H(5))Ru(kappa(2)-O(2)CCH(3))(PPh(3))], which can be reconverted to the carbene complexes [(eta(5)-C(5)H(5))RuCl(=CR(2))(PPh(3))] in a one-pot reaction with R(2)CN(2) and Et(3)NHCl.  相似文献   

14.
The synthesis and characterisation of a pyridazine-containing two-armed grid ligand L2 (prepared from one equivalent of 3,6-diformylpyridazine and two equivalents of p-anisidine) and the resulting transition metal (Zn, Cu, Ni, Co, Fe, Mn) complexes (1-9) are reported. Single-crystal X-ray structure determinations revealed that the copper(I) complex had self-assembled as a [2 x 2] grid, [Cu(I) (4)(L2)(4)][PF(6)](4).(CH(3)CN)(H(2)O)(CH(3)CH(2)OCH(2)CH(3))(0.25) (2.(CH(3)CN)(H(2)O)(CH(3)CH(2)OCH(2)CH(3))(0.25)), whereas the [Zn(2)(L2)(2)(CH(3)CN)(2)(H(2)O)(2)][ClO(4)](4).CH(3)CN (1.CH(3)CN), [Ni(II) (2)(L2)(2)(CH(3)CN)(4)][BF(4)](4).(CH(3)CH(2)OCH(2)CH(3))(0.25) (5 a.(CH(3)CH(2)OCH(2)CH(3))(0.25)) and [Co(II) (2)(L2)(2)(H(2)O)(2)(CH(3)CN)(2)][ClO(4)](4).(H(2)O)(CH(3)CN)(0.5) (6 a.(H(2)O)(CH(3)CN)(0.5)) complexes adopt a side-by-side architecture; iron(II) forms a monometallic cation binding three L2 ligands, [Fe(II)(L2)(3)][Fe(III)Cl(3)OCl(3)Fe(III)].CH(3)CN (7.CH(3)CN). A more soluble salt of the cation of 7, the diamagnetic complex [Fe(II)(L2)(3)][BF(4)](2).2 H(2)O (8), was prepared, as well as two derivatives of 2, [Cu(I) (2)(L2)(2)(NCS)(2)].H(2)O (3) and [Cu(I) (2)(L2)(NCS)(2)] (4). The manganese complex, [Mn(II) (2)(L2)(2)Cl(4)].3 H(2)O (9), was not structurally characterised, but is proposed to adopt a side-by-side architecture. Variable temperature magnetic susceptibility studies yielded small negative J values for the side-by-side complexes: J=-21.6 cm(-1) and g=2.17 for S=1 dinickel(II) complex [Ni(II) (2)(L2)(2)(H(2)O)(4)][BF(4)](4) (5 b) (fraction monomer 0.02); J=-7.6 cm(-1) and g=2.44 for S= 3/2 dicobalt(II) complex [Co(II) (2)(L2)(2)(H(2)O)(4)][ClO(4)](4) (6 b) (fraction monomer 0.02); J=-3.2 cm(-1) and g=1.95 for S= 5/2 dimanganese(II) complex 9 (fraction monomer 0.02). The double salt, mixed valent iron complex 7.H(2)O gave J=-75 cm(-1) and g=1.81 for the S= 5/2 diiron(III) anion (fraction monomer=0.025). These parameters are lower than normal for Fe(III)OFe(III) species because of fitting of superimposed monomer and dimer susceptibilities arising from trace impurities. The iron(II) centre in 7.H(2)O is low spin and hence diamagnetic, a fact confirmed by the preparation and characterisation of the simple diamagnetic iron(II) complex 8. M?ssbauer measurements at 77 K confirmed that there are two iron sites in 7.H(2)O, a low-spin iron(II) site and a high-spin diiron(III) site. A full electrochemical investigation was undertaken for complexes 1, 2, 5 b, 6 b and 8 and this showed that multiple redox processes are a feature of all of them.  相似文献   

15.
The reactions of [Rh(2)Cl(kappa(2)-acac)(mu-CPh(2))(2)(mu-SbiPr(3))] (3) and [Rh(2)(kappa(2)-acac)(2)(mu-CPh(2))(2)(mu-SbiPr(3))] (4) with PMe(3) lead to exchange of the bridging ligand and afford the novel PMe(3)-bridged counterparts 5 and 6, in which the phosphane occupies a semibridging (5) or a doubly bridging (6) position. In both cases, the bonding mode was confirmed crystallographically. Treatment of 6 with CO causes a shift of PMe(3) from a bridging to a terminal position and gives the unsymmetrical complex [(kappa(2)-acac)Rh(mu-CPh(2))(2)(mu-CO)Rh(PMe(3))(kappa(2)-acac)] (7). Similarly to 5 and 6, the related compounds 10 and 11 with one or two acac-f(3) ligands were prepared. While both PEt(3) and PnBu(3) react with 3 by exchange of the bridging stibane for phosphane to give compounds 12 and 13, the reactions of 4 with PMePh(2) and PnBu(3) afford the mixed-valent Rh(0)Rh(II) complexes [(PR(3))Rh(mu-CPh(2))(2)Rh(kappa(2)-acac)(2)] (17, 18) in high yields. In contrast, treatment of 4 with PEt(3) and PMe(2)Ph generates the phosphane-bridged compounds [Rh(2)(kappa(2)-acac)(2)(mu-CPh(2))(2)(mu-PR(3))] (14, 15) exclusively. Stirring a solution of 14 (R=Et) in benzene for 15 h at room temperature leads to complete conversion to the mixed-valent isomer 16. The reaction of 6 with an equimolar amount of CR(3)CO(2)H (R=F, H) or phenol in the molar ratio of 1:10 results in substitution of one acac by one trifluoracetate, acetate, or phenolate ligand without disturbing the [Rh(2)(mu-CPh(2))(2)(mu-PR(3))] core. From 6 and an excess of CR(3)CO(2)H, the symmetrical bis(trifluoracetato) and bis(acetate) derivatives [Rh(2)(kappa(2)-O(2)CCR(3))(2)(mu-CPh(2))(2)(mu-PMe(3))] (21, 22) were obtained.  相似文献   

16.
Manual grinding of the organometallic complex [Fe(eta(5)-C(5)H(4)COOH)(2)] with a number of solid bases, namely 1,4-diazabicyclo[2.2.2]octane, C(6)H(12)N(2), 1,4-phenylenediamine, p-(NH(2))(2)C(6)H(4), piperazine, HN(C(2)H(4))(2)NH, trans-1,4-cyclohexanediamine, p-(NH(2))(2)C(6)H(10), and guanidinium carbonate [(NH(2))(3)C](2)[CO(3)], generates quantitatively the corresponding adducts, [HC(6)H(12)N(2)][Fe(eta(5)-C(5)H(4)COOH)(eta(5)-C(5)H(4)COO)] (1), [HC(6)H(8)N(2)][Fe(eta(5)-C(5)H(4)COOH)(eta(5)-C(5)H(4)COO)] (2), [H(2)C(4)H(10)N(2)][Fe(eta(5)-C(5)H(4)COO)(2)] (3), [H(2)C(6)H(14)N(2)][Fe(eta(5)-C(5)H(4)COO)(2)].2 H(2)O, (4.2 H(2)O), and [C(NH(2))(3)](2)[Fe(eta(5)-C(5)H(4)COO)(2)].2 H(2)O, (5.2 H(2)O), respectively. Crystallization from methanol in the presence of seeds of the ground sample allows the growth of single crystals of these adducts; therefore we were able to determine the structures of the adducts by single-crystal X-ray diffraction. This information was used in turn to identify and characterize the polycrystalline materials obtained by the grinding process. In the case of [HC(6)N(2)H(12)][Fe(eta(5)-C(5)H(4)COOH)(eta(5)-C(5)H(4)COO)] (1), the base can be removed by mild treatment regenerating the starting dicarboxylic acid, while in all other cases decomposition is observed. The solid-solid processes described herein imply molecular diffusion through the lattice, breaking and reassembling of hydrogen-bonded networks, and proton transfer from acid to base.  相似文献   

17.
Reaction of K(10)[alpha(2)-P(2)W(17)O(61)] or K(10)[alpha(1)-P(2)W(17)O(61)] or [Bu(4)N][OsCl(4)N] in a water/methanol mixture, and subsequent precipitation with (Bu(4)N)Br provided [alpha(2)-P(2)W(17)O(61){Os(VI)N}](7-) and [alpha(1)-P(2)W(17)O(61){Os(VI)N}](7-) Dawson structures as tetrabutylammonium salts. Reactions of [(Bu(4)N)(4)][alpha-H(3)PW(11)O(39)] with either [ReCl(3)(N(2)Ph(2))(PPh(3))(2)] or [Bu(4)N][ReCl(4)N] are alternatives to the synthesis of [(Bu(4)N)(4)][alpha-PW(11)O(39){Re(VI)N}]. (183)W and (15)N NMR, EPR, IR, and UV-visible spectroscopies and cyclic voltammetry have been used to characterize these compounds and the corresponding [(Bu(4)N)(4)][alpha-PW(11)O(39){Os(VI)N}] Keggin derivative.  相似文献   

18.
The steric factors that allow trivalent [(C(5)Me(5))(3)U] (1) to function as a three-electron reductant with C(8)H(8) to form tetravalent [{(C(5)Me(5))(C(8)H(8))U}(2)(μ-C(8)H(8))] (2) have been explored by examining the synthesis and reactivity of the intermediate, "[(C(5)Me(5))(2)(C(8)H(8))U]" (3), and the slightly less crowded analogues, [(C(5)Me(5))(C(5)Me(4)H)(C(8)H(8))U] and [(C(5)Me(4)H)(2)(C(8)H(8))U], that have, successively one less methyl group. The reaction of [{(C(5)Me(5))(C(8)H(8))U(μ-OTf)}(2)] (4; OTf=OSO(2) CF(3)) with two equivalents of KC(5)Me(5) in THF gave ring-opening to "[(C(5)Me(5))(C(8)H(8))U{O(CH(2))(4)(C(5) Me(5))}]" consistent with in situ formation of 3. Reaction of 4 with two and four equivalents of KC(5)Me(4)H generates two equivalents of [(C(5)Me(5))(C(5)Me(4)H)(C(8)H(8))U] (5) and [(C(5)Me(4)H)(2)(C(8)H(8))U] (6), respectively, which in contrast to 3 were isolable. Tetravalent 5 reduces phenazine and PhEEPh (E=S, Se, and Te) to form the tetravalent uranium reduction products, [{(C(5)Me(5))(C(8)H(8))U}(2)(μ-C(12)H(8)N(2))] (7), [{(C(5)Me(5))(C(8)H(8))U}(2)(μ-SPh)(2)] (8), [{(C(5)Me(5))(C(8)H(8))U}(2)(μ-SePh)(2)] (9), and [{(C(5)Me(5))(C(8)H(8))U}(2)(μ-TePh)(2)] (10), consistent with sterically induced reduction. In contrast, the less sterically crowded 6 does not react with these substrates.  相似文献   

19.
通过测定不同年份,同年不同月份采收的人参根、茎和叶中稀土元素(RE′s)的含量,研究稀土元素在人参中分配规律。样品经硝酸和过氧化氢微波消解后,以Re、Rh元素为内标,用电感耦合等离子体质谱法测定~(89)Y、~(139)La、~(140)Ce、~(141)Pr、~(146)Nd、~(147)Sm、~(151)Eu、~(157)Gd、~(159)Tb、~(163)Dy、~(165)Ho、~(166)Er、~(169)Tm、~(172)Yb和~(175)Lu共15种稀土元素在人参根茎叶中的含量。15种稀土元素的检出限在0.24~2.46μg·kg~(-1)之间。稀土元素在人参叶中含量最高,根部居中,茎中最少,在人参根中具有逐年累积的趋势。  相似文献   

20.
Hydrolysis of dibenzyltin dichloride in ethanol has been found to give an unprecedented carbonate anion (CO(3) (2-))-bridged double-ladder organooxotin cluster, [(R(2)SnO)(3)(R(2)SnOH)(2)(CO(3))](2) (1, R = C(6)H(5)CH(2)), with five tin atoms in each ladder. With the aim of obtaining organooxotin clusters with large cavities suitable for host-guest chemistry, we used 1,1'-ferrocenedicarboxylic acid (H(2)L(a)) and hexanedioic acid (H(2)L(b)) to replace the carbonate anions (CO(3) (2-)), and thereby clusters [(R(2)SnO)(3)(R(2)SnOH)(2)L(a)](2) (2) and [(R(2)SnO)(3)(R(2)SnOH)(2)L(b)](2) (3) were obtained. When 1 was treated with benzoic acid (HL(c)) in different stoichiometric ratios (1:4, 1:10), ladder cluster (R(2)SnO)(3)(R(2)SnOH)(2)(L(c))(2) (4) and drum cluster [RSn(O)L(c)](6) (5) were obtained. Through the hydrolysis of Cy(2)SnCl(2) (Cy = C(6)H(11)) and (C(6)H(5)CH(2))(2)SnCl(2), two interesting ethanolate-modified clusters [Cy(2)(C(2)H(5)O)SnOSn(C(2)H(5)O)Cy(2)](2) (6) and [(R(2)SnO)(3)(R(2)SnOH)(R(2)SnOC(2)H(5))(CO(3))](2) (7) were obtained. All the tin atoms in these ladder clusters are five-coordinate surrounded by two alkyl groups and three O atoms, and have distorted trigonal-bipyramidal coordination environments with two carbon atoms and one O atom in the equatorial positions and two O atoms in the axial positions. The structures of all these compounds have been established by single-crystal X-ray diffraction analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号