首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In the present study, novel tetra Schiff bases were synthesized by condensation of 1,2,4,5-tetra (5-amino-1,3,4-thiadiazole-2-yl)benzene with different aromatic aldehydes. The chemical structures were confirmed by means of IR, 1H NMR, 13C NMR, and elemental analysis. All compounds were screened for antibacterial (Staphylococcus aureus ATCC-9144, Staphylococcus epidermidis ATCC-155, Micrococcus luteus ATCC-4698, Bacillus cereus ATCC-11778, Escherichia coli ATCC-25922, and Pseudomonas aeruginosa ATCC-2853) and antifungal (Aspergillus niger ATCC-9029 and Aspergillus fumigatus ATCC-46645) activities by paper disc diffusion technique. The minimum inhibitory concentrations (MICs) of the compounds were also determined by agar streak dilution method. Among the synthesized compounds 1,2,4,5-tetra[5-(4-nitrobenzylideneamino)-1,3,4-thiadiazole-2-yl]benzene 7 was found to be the most potent antimicrobial activity with MICs of 3.4, 2.1, 1.2, 2.0, 3.1, 2.4, 1.1, and 1.7 μg/mL against the above mentioned respective strains.  相似文献   

2.
A series of neodymium(III) and samarium(III) complexes of type [Ln(L)Cl(H2O)3] have been synthesized with Schiff bases (LH2) derived from 3‐(phenyl/substituted phenyl)‐4‐amino‐5‐mercapto‐1,2,4‐triazoles and isatin. The structures of the complexes were established using elemental analysis, molar conductivities, magnetic moments, infrared, NMR (1H, 13C) and UV–visible spectra, X‐ray diffraction and mass spectrometry. The thermal behaviour of these compounds under non‐isothermal conditions was investigated using thermogravimetry and differential thermogravimetry. The intermediates obtained at the end of various thermal decomposition steps were identified from elemental analysis and infrared spectral studies. All the ligands and their complexes were also screened for their antibacterial activity against Staphylococcus aureus and Bacillus subtilis and antifungal activity against Aspergillus niger, Aspergillus flavus and Colletotrichum capsici. The screening results were correlated with the structural features of the compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
By using a convergence approach two new poly(aryl ether) dendritic structures carrying 4-fluorobenzyl bromide on the surface and calix[4]arenes as a core with G1 were synthesized for the first time. Fluorinated dendritic structures are connected through ether bonds on the lower rim of the calix[4]arene unit. Its structure was determined by 1H-NMR and elemental analysis. The thermal stabilities of fluorinated dendritic structures, based on calix[4]arenes, were investigated using thermogravimetric analysis. The activation energies and thermal degradation of the structures were calculated with the Ozawa Method.  相似文献   

4.

Abstract  

A series of new tetrazolo[1,5-a]quinoline-4-carbonitrile derivatives were synthesized for the first time via tetrazolo[1,5-a]quinoline derivatives. Elemental analysis, IR, 1H NMR, 13C NMR, and mass spectral data were used to elucidate the structures of all newly synthesized compounds. In vitro antimicrobial activities of synthesized compounds were investigated against Gram-positive Bacillus subtilis, Gram-negative Escherichia coli, and two fungi, Candida albicans and Aspergillus niger, in comparison with standard drugs. Some of the tested compounds showed significant antimicrobial activity.  相似文献   

5.
The polymeric ligand (BFP) was synthesized by condensation of bisphenol-A, formaldehyde, and piperazine in alkaline medium at 70–80°C. The polymer–metal complexes were synthesized by the reaction of BFP with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) acetates in 1?:?0.5 (ligand?:?metal) molar ratio. All the synthesized polymers were characterized by elemental, spectral (infrared, 1H-NMR, and UV-Vis), magnetic moment measurements, and thermal (TGA) analysis. The ligand-field and nephelauxetic parameters have been determined from UV-Vis spectra using ligand-field theory. Elemental analyses indicate the association of water with metal for Mn(II), Co(II), and Ni(II), which is also supported by TGA. The antimicrobial activities of the synthesized polymers were studied by agar well diffusion methods against Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus, Escherichia coli, Salmonella typhi, Pseudomonas aeruginosa, and Shigella boydii. The antimicrobial activity and thermal stability of Cu(II)–polymer were higher than the other polymer–metal complexes due to the higher stability constant of Cu(II).  相似文献   

6.
Herein, we report a convenient and facile methodology for the synthesis of new series of pyrazole and pyrimidine derivatives 2a – f and 3a – f under ultrasound irradiation. Pyrazole and pyrimidine derivatives have been synthesized in better yields and shorter reaction times compared with the conventional method. The chemical structures of all the synthesized compounds were elucidated by their IR, 1H NMR, 13C NMR, MS, and elemental analysis. Further, the target compounds were screened for their antimicrobial activity against four bacteria (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa) and two fungi (Candida albicans, Aspergillus niger). In particular, compounds 2a , 2d , 2e , 3a , 3e , and 3f exhibited potent antimicrobial activity.  相似文献   

7.
Metal(II) and metal(III) coordination compounds of griseofulvin (GFV) drug were synthesized. The structure of the ligand was determined on the basis of elemental analyses, infrared and 1H NMR spectroscopies and thermal studies. GFV behaved as a neutral tridentate chelating agent and coordinated to metal ions through three oxygen atoms: two methoxy groups and oxygen atom of furan ring. Metal complexes were characterized by means of elemental analyses and molar conductance, spectral (infrared, electron spin resonance) and thermal studies. All the complexes showed molar conductance behaviour corresponding to an electrolytic nature. All the complexes showed octahedral geometry, except [Zn(GFV)Cl]Cl that showed tetrahedral geometry. Density functional theory (DFT) calculations were employed to understand and estimate the contribution of each interaction in the formation of the assembly using several theoretical models. The computed parameters from DFT calculations for structure optimizations and vibrational frequencies were in good agreement with the experimental data. Newly synthesized metal complexes in addition to GFV were examined against opportunistic pathogens. The biological applications of complexes were studied with two Gram‐positive bacteria (Bacillus subtilis and Staphylococcus aureus) and two Gram‐negative bacteria (Escherichia coli and Neisseria gonorrhoeae) as well as their antifungal activity against Candida albicans. Results suggested that metal complexes were more biologically sensitive than free ligand. The complexes showed a moderate inhibition of MCF7 breast cancer cell line growth. Molecular docking studies further helped in understanding the mode of action of the compounds through their various interactions with the crystal structures of: human serum albumin (PDB: 5FUO), Staphylococcus aureus nucleoside (PDB: 3Q8U), human acetylcholinesterase (PDB: 1B41) and the human DNA–Topo I complex (PDB: 1SC7).  相似文献   

8.
Through a cyclization reaction of 2‐phenylbutyric acid with N‐ phenylthiosemicarbazide and POCl3, novel 1,3,4‐thiadiazole derivatives were synthesized. Their structures were confirmed using IR, 1H NMR, and 13C NMR spectroscopies and elemental analysis. The antibacterial activities of the obtained 1,3,4‐thiadiazole derivatives were tested against Gram‐negative bacteria (Salmonella enteritidis , Salmonella typhimurium , Enterobacter aerogenes , Salmonella infantis , Salmonella kentucky , and Escherichia coli ) and Gram‐positive bacteria (Staphylococcus aureus , Bacillus subtilis , and Enterococcus durans ) using a disk diffusion method. Moreover, an antifungal activity experiment was performed against Candida albicans using the disk diffusion method. It was observed that the synthesized 1,3,4‐thiadiazole derivatives exhibited effective antimicrobial activity against S. aureus , E. coli , and C. albicans . Based on these results, the 1,3,4‐thiadiazole derivatives can be considered as a source of bioactive agents for pharmacological and medicinal applications.  相似文献   

9.
A new polymeric ligand was synthesized by the reaction of bisphenol-A and formaldehyde in the basic medium, followed by condensation polymerization with barbituric acid in the acidic medium. Polymer metal complexes were prepared by reaction of this resin with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II). The polymeric resin and its metal polychelates were characterized by elemental analysis, FT-IR, 13C-NMR, and 1H-NMR spectra. The geometry of the polymer metal complexes was evaluated by electronic spectra (UV-Vis) and magnetic moment measurement. Thermal stabilities show an increased thermal stability of the metal polychelates compared to the ligand. The antibacterial activities of all the synthesized polymers were investigated against Bacillus subtilis, Staphylococcus aureus, and Escherichia coli, showing good antibacterial activities against these bacteria. Cu(II) polychelate showed highest biocidal activity.  相似文献   

10.
A series of novel 5‐(2,3,4,5‐tetrahydro‐1H‐chromeno[2,3‐d]pyrimidin‐5‐yl)pyrimidione derivatives have been synthesized from substituted salicylaldehydes and barbituric acid or 2‐thiobarbituric acid in water catalyzed by phase transfer catalysis of triethylbenzyl ammonium chloride (TEBA). Elemental analysis, IR, 1H NMR, and 13C NMR elucidated the structures of all the newly synthesized compounds. In vitro antimicrobial activities of synthesized compounds have been investigated against Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Pseudomonas aeruginosa. These newly synthesized derivatives exhibited significant in vitro antibacterial activity.  相似文献   

11.
Here, click synthesis of 15 naphthyl-linked disubstituted 1,2,3-triazoles has been carried out by the reaction between 1-(prop-2-yn-1-yloxy)naphthalene and aromatic azides. The structure elucidation of the synthesized compounds was carried out by FTIR, 1H NMR, 13C NMR, and HRMS techniques. Further, the compound 7f was confirmed by X-ray crystallography (CCDC 1876891). The synthesized compounds were explored for antibacterial activity against Bacillus cereus, Escherichia coli, and Staphylococcus aureus. Biological evaluation of synthesized 1,2,3-triazoles revealed moderate to good antibacterial activity against the tested strains. The antioxidative behavior of synthesized compounds manifested the remarkable free radical scavenging activity using DPPH assay.  相似文献   

12.
A series of methylenebis(phenyl-1,5-benzothiazepine)s 4 and methylenebis(benzofuryl-1,5-benzothiazepine)s 5 were prepared by the reaction of methylene-bis-chalcones 3 with 2-aminothiophenol for 4 and followed by the condensation with chloroacetone for 5. The structures of the synthesized compounds have been confirmed by their IR, 1H NMR, 13C NMR, MS and elemental analyses. All the synthesized compounds were tested for their antimicrobial activity against Gram-positive, Gram-negative bacteria and fungi. To elucidate the essential structural requirements for the antimicrobial activity, the preliminary structure-activity relationship has been described. Among the compounds tested, the dimeric compounds 4f, 4g, 5f and 5g were found to be most active against Bacillus subtilis, Bacillus sphaericus, Staphylococcus aureus, Klebsiella aerogenes and Chromobacterium violaceum. Similarly these dimeric compounds showed potent antifungal activity against Candida albicans, Aspergillus fumigatus, Trichophyton rubrum, and Trichophyton mentagrophytes. It is interesting to note that the dimeric compounds with substituents of heterocyclic ring at the 4th position of benzothiazepine system displayed notable antibacterial activity equal to that of streptomycin and penicillin. Further, the activity of all the dimeric compounds was compared with that of their monomeric compounds, and it is interesting to note that almost all the dimeric compounds showed enhanced activity than their monomeric compounds.  相似文献   

13.
Three new complexes, [(η6-C6H6)RuCl(C5H4N-2-CH=N-Ar)]PF6 (Ar = phenylmethylene (1), (4-methoxyphenyl)methylene (2), and phenylhydrazone (3)), were prepared by reacting [(η6-C6H6)Ru(μ-Cl)Cl]2 with N,N′-bidentate ligands in a 1 : 2 ratio. Full characterization of the complexes was accomplished using 1H and 13C NMR, elemental and thermal analyses, UV–vis and IR spectroscopy and single crystal X-ray structures. Single crystal structures confirmed a pseudo-octahedral three-legged, piano-stool geometry around Ru(II), with the ligand coordinated to the ruthenium(II) through two N atoms. The cytotoxicity of the mononuclear complexes was established against three human cancer cell lines and selectivity was also tested against non-cancerous human epithelial kidney (HEK 293) cells. The compounds were selective toward the tumor cells in contrast to the known anti-cancer drug 5-fluoro uracil which was not selective between the tumor cells and non-tumor cells. All the compounds showed moderate activity against MCF7 (human breast adenocarcinoma), but showed low antiproliferative activity against Caco-2 and HepG2. Also, antimicrobial activities of the complexes were tested against a panel of antimicrobial-susceptible and -resistant Gram-negative and Gram-positive bacteria. Of special interest is the anti-mycobacterial activity of all three synthesized complexes against Mycobacterium smegmatis, and bactericidal activity against resistant Enterococcus faecalis and methicillin-resistant Staphylococcus aureus ATCC 43300.  相似文献   

14.
Two rare metal coordination complexes of yttrium(III) including 1,10‐phenanthroline, Y(phen)2(NO3)3 and (phenH)2[Y2(pydc)3(NO3)2·6H2O] (phen=1,10‐phenanthroline, pydc=2,6‐pyridinedicarboxylate), and a proton transfer compound (phenH+)2(pydc2?) were synthesized and characterized by elemental analysis, molar conductance, infrared spectra (IR), nuclear magnetic resonance (NMR) and thermal analysis. The proposed structures of yttrium complexes were exhibited. The in vitro biological activities of the newly synthesized complexes have also been investigated against Bacillus coli, Staphylococcus aureus and Candida albicans. The results showed that yttrium(III) complexes including 1,10‐phenanthroline exhibited better antibacterial/antifungal activity than their ligands and corresponding compounds.  相似文献   

15.
Novel thiazol-5-ylpyrimidine derivatives were designed and synthesized. The chemical structures of all new synthesized compounds were assigned by studying their elemental analyses and spectral data (FT-IR, 1HNMR, 13C NMR, and MS). The target compounds, 8 and 9a-9d were evaluated for their antimicrobial activity in vitro against gram-positive bacteria, Bacillus subtilis and Staphylococcus aureus, gram-negative bacteria, Salmonella abony and Escherichia coli and fungi, Aspergillus flavus and Fusarium oxysporum. In particular, compounds 9a-9c exhibited moderate to good activity against gram-positive bacteria, S. aureus, gram-negative bacteria, S. abony and fungus, Fusarium oxysporum in comparison with reference drugs.  相似文献   

16.
3‐3′‐Benzylidenebis[4‐hydroxycoumarin] or 4‐nitro,3‐3′‐benzylidenebis[4‐hydroxycoumarin] or 4‐methoxy,3‐3′‐benzylidenebis[4‐hydroxycoumarin] and their complexes with Cu(II), Fe(II) and Fe(III) were synthesized and characterized using 1H‐NMR, 13C‐NMR, IR spectra, electronic spectra, magnetic measurements and elemental analyses. The ligands, metal salts, complexes, control and standard drug were tested for their in‐vitro antibacterial activity against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Salmonella typhi, and Serratia marcescens. The metal complexes exhibit good activity against bacterial strains compared with parental compounds and moderate compared with the standard drug (ciprofloxacin). In‐vitro DNA‐binding activity was carried out using agarose gel electrophoresis. The synthesized compounds show effective DNA‐binding activity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Complexes of Cu(II), Fe(II) and Fe(III) have been synthesized with 2-nitro-3,3′-benzylidene bis[4-hydroxycoumarin]/4-chloro-3,3′-benzylidene bis[4-hydroxycoumarin]/4-hydroxy-3,3′-benzylidene bis[4-hydroxycoumarin]. They have been characterized using 1H-NMR, 13C-NMR, IR spectra, electronic spectra, magnetic measurements, elemental analyses and screened for their in-vitro biocidal activity against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Salmonella typhi, and Serratia marcescens bacterial strains and for their in-vitro antifungal activity against Aspergillus niger, Aspergillus flavus and Lasiodiplodia theobromae. The metal complexes exhibit good activity against bacterial strains compared to parent compounds, but no significant antifungal activity against fungal strains. In-vitro nuclease activity has been carried out using agarose gel electrophoresis. The synthesized compounds show effective nuclease activity.  相似文献   

18.
A series of new ethyl 2‐(ethoxyphosphono)‐1‐cyano‐2‐(substituted tetrazolo[1,5‐a]quinolin‐4‐yl)ethanoate derivatives have been synthesized for the first time of tetrazolo[1,5‐a]quinoline derivatives. Elemental analysis, IR, 1H NMR, 13C NMR, 31P NMR and mass spectral data elucidated the structures of the all newly synthesized compounds. In vitro antimicrobial activities of synthesized compounds have been investigated against Gram‐positive Bacillus subtilis, Gram‐negative Escherichia coli and two fungi Candida albicans and Aspergillus niger in comparison with standard drugs. Significantly microbiological behavior of these newly synthesized derivatives possesses significant antibacterial and antifungal activity.  相似文献   

19.
In this work, 4H-1,4-benzothiazines were synthesized by an efficient synthetic method in a single step involving heterocyclization of substituted 2-aminobenzenethiols with β-ketoester. The structures of the synthesized compounds were confirmed by their analytical and spectral data. The synthesized compounds were evaluated for their antimicrobial activity against bacterial species; E. coli and Bacillus cereus. The synthesized compounds showed significant activity against microorganisms, which can be correlated with the privileged heterocyclic structural scaffolds.  相似文献   

20.
The present communication deals with the synthesis of 1,3,4‐oxadiazole‐2‐thiol derivatives containing cyclic secondary amines such as morpholine, N‐methyl piperizine, and piperizine. The structural elucidation is based on the spectral data (IR, 1H NMR, and 13C NMR) .The newly synthesized compounds were then tested for their antimicrobial activity against a representative panel of micro‐organisms such as Bacillus subtilis, Escherichia coli and Candida albicans by using ciprofloxacin and fluconazole as reference drugs for bacteria and fungi, respectively. These synthesized compounds showed moderate to potential antibacterial and antifungal activity in the range of 6–50 μM against the selected bacteria and 12–50 μM against the most common fungi, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号