首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel copolymers of trisubstituted ethylene monomers, alkyl and alkoxy ring-substituted 2-phenyl-1,1-dicyanoethylenes, RC6H4CH=C(CN)2 (where R is 2-ethyl, 4-i-propyl, 4-butyl, 4-i-butyl, 4-t-butyl, 2-ethoxy, and 4-hexyloxy) and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C-NMR. The order of relative reactivity (1/r 1) for the monomers is 4-t-butyl (1.45) > 4-i-propyl (1.38) > 2-ethyl (1.37) > 4-hexyloxy (1.33) > 4-i-butyl (1.24) > 2-ethoxy (1.13) > 4-butyl (1.04). High T g of the copolymers, in comparison with that of polystyrene) indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500°C range with residue (1–10% wt.), which then decomposed in the 500–800°C range.  相似文献   

2.
Novel trisubstituted ethylenes, alkyl ring-substituted butyl 2-cyano-3-phenyl-2-propenoates, RPhCH=C(CN)CO2C4H9 (where R is 2-methyl, 3-methyl, 4-methyl, 2-ethyl, 4-ethyl, 4-butyl, 4-t-butyl, 4-i-butyl) were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and butyl cyanoacetate, and characterized by CHN analysis, IR, 1H and 13C-NMR. All the ethylenes were copolymerized with styrene (M1) in solution with radical initiation (ABCN) at 70°C. The compositions of the copolymers were calculated from nitrogen analysis and the structures were analyzed by IR, 1H and 13C-NMR. The order of relative reactivity (1/r1) for the monomers is 4-ethyl (4.69) > 3-methyl (4.18) > 4-t-butyl (2.98) > 2-ethyl (2.52) > 4-butyl (2.47) > 4-methyl (1.86) > 4-i-butyl (0.94) > 2-methyl (0.87). Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500°C range with residue (3–8% wt), which then decomposed in the 500–800°C range.  相似文献   

3.
Novel trisubstituted ethylenes, alkyl ring-substituted isopropyl 2-cyano-3-phenyl-2-propenoates, RPhCH = C(CN)CO2CH(CH3)2 (where R is H, 2-methyl, 3-methyl, 4-methyl, 4-ethyl, 4-propyl, 4-i-propyl, 4-butyl, 4-i-butyl, 4-t-butyl) were prepared and copolymerized with styrene. The ethylenes were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and isopropyl cyanoacetate, and characterized by CHN analysis, IR, 1H and 13C NMR. All the ethylenes were copolymerized with styrene in solution with radical initiation (ABCN) at 70°C. The compositions of the copolymers were calculated from nitrogen analysis and the structures were analyzed by FTIR, 1H and 13C NMR. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 250–500°C range with residue (2-5% wt.), which then decomposed in the 500–800°C range.  相似文献   

4.
Trisubstituted ethylenes, alkyl ring-substituted propyl 2-cyano-3-phenyl-2-propenoates, RPhCH?C(CN)CO2C3H7 (where R is H, 2-methyl, 3-methyl, 4-methyl, 4-ethyl, 4-propyl, 4-i-propyl, 4-butyl, 4-i-butyl, 4-t-butyl) were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and propyl cyanoacetate, and characterized by CHN analysis, IR, 1H and 13C-NMR. All the ethylenes were copolymerized with styrene (M1) in solution with radical initiation (ABCN) at 70°C. The compositions of the copolymers were calculated from nitrogen analysis and the structures were analyzed by IR, 1H and 13C-NMR. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 250–500°C range with residue (2–4% wt.), which then decomposed in the 500–800°C range.  相似文献   

5.
Novel copolymers of trisubstituted ethylene monomers, alkoxy ring-substituted 2-phenyl-1,1-dicyanoethylenes, RC6H4CH = C(CN)2 (where R is 2-methoxy, 3-methoxy, 4-methoxy, 2-ethoxy, 3-ethoxy, 4-ethoxy, 4-propoxy, 4-buthoxy, 4-hexyloxy) and 4-fluorostyrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C-NMR. The order of relative reactivity (1/r 1) for the monomers is 2-methoxy (1.5) > 4-ethoxy (1.0) > 4-methoxy (0.8) > 3-ethoxy (0.7) = 3-methoxy (0.7) > 4-hexyloxy (0.6) = 2-ethoxy (0.6) > 4-butoxy (0.5) = 4-propoxy (0.5). High T g of the copolymers, in comparison with that of poly(4-fluorostyrene) indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in 284–500°C range with residue (5–9% wt), which then decomposed in the 500–800°C range.  相似文献   

6.
Novel copolymers of trisubstituted ethylene monomers, ring-substituted 2-phenyl-1,1-dicyanoethylenes, RC6H4CH=C(CN)2 (where R is 4-dimethylamino, 4-diethylamino, 3-phenoxy, 3-benzyloxy, 4-benzyloxy, 4-acetoxy, 2-cyano, 3-cyano, and 4-cyano) and 4-fluorostyrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C-NMR. The order of relative reactivity (1/r 1) for the monomers is 3-benzyloxy (2.9) > 4-cyano (2.7) > 3-phenoxy (1.9) > 4-acetoxy (1.8) > 3-cyano (1.7) > 2-cyano (1.6) > 4-benzyloxy (0.6) > 4-dimethylamino (0.4) = 4-diethylamino (0.4). High T g of the copolymers, in comparison with that of poly (4-fluorostyrene) indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 290–400°C range with residue, which then decomposition in 400–800°C range.  相似文献   

7.
Novel copolymers of trisubstituted ethylene monomers, ring-substituted 1,1-dicyano-2-(1-naphthyl)ethylenes, RC10H6CH?C(CN)2 (where R is H, 2-OCH3, 4-OCH3) and 4-fluorostyrene were prepared by solution copolymerization in the presence of a radical initiator (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C-NMR. The order of relative reactivity (1/r 1) for the monomers is (5.86) > 2-CH3O (4.28) > 4-CH3O (2.87). Relatively high Tg of the copolymers in comparison with that of poly(4-fluorostyrene) indicates a decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500°C range with residue (7.3–7.7% wt.), which then decomposed in the 500–800°C range.  相似文献   

8.
Novel copolymers of trisubstituted ethylene monomers, halogen ring-disubstituted 2-phenyl-1,1-dicyanoethylenes, RC6H3CH= C(CN)2 (where R is 2,3-Cl2, 2,4-Cl2, 2,6-Cl2, 3,4-Cl2, 3,5-Cl2, 2-Cl-4-F, 2-Cl-6-F, 3-Cl-4-F) and 4-fluorostyrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C-NMR. The order of relative reactivity (1/r 1) for the monomers is 2-Cl-4-F (2.42) > 3,4-Cl2(2.40) > 2,4-Cl2(1.97) > 2-Cl-6-F (1.86) > 3-Cl-4-F (1.68) > 2,3-Cl2 (0.89) > 3,5-Cl2 (0.70) > 2,6-Cl2 (0.47). High Tg of the copolymers, in comparison with that of poly(4-fluorostyrene) indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. Softening of the copolymers started in 194–216°C range. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 290–400°C range with residue, which then decomposed in 400–800°C range.  相似文献   

9.
Novel copolymers of trisubstituted ethylene monomers, ring-disubstituted 2-phenyl-1,1-dicyanoethylenes, RC6H3CH=C(CN)2 (where R = 3-Br-4-CH3O, 5-Br-2-CH3O, 2-F-5-CH3, 2-F-6-CH3, 3-F-2-CH3, 3-F-4-CH3, 4-F-2-CH3, 4-F-3-CH3) and 4-fluorostyrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C-NMR. The order of relative reactivity (1/r 1) for the monomers is 3-F-4-CH3(1.64) > 5-Br-2-CH3O (1.62) > 3-Br-4-CH3O (1.36) > 4-F-2-CH3(1.3) > 4-F-3-CH3(1.26) > 3-F-2-CH3(1.11) > 2-F-5-CH3 (0.98) > 2-F-6-CH3 (0.97). High Tg of the copolymers, in comparison with that of poly(4-fluorostyrene) indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 290–400°C range with residue, which then decomposed in 400–800°C range.  相似文献   

10.
Copolymerization of fluorine ring-substituted 2-phenyl-1,1-dicyanoethenes, RC6H3CH?C(CN)2 (R is 2,3-F,F, 2,4-F,F, 2,5-F,F, 2,6-F,F, and 4-CF3) with 4-fluorostyrene were prepared in the presence of a radical initiator (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the copolymers were characterized by IR, 1H and 13C-NMR, GPC, DSC, and TGA. The monomer reactivity ratios for 4-fluorostyrene (M1), r1 = 0.6 and 2-(2,4-difluorophenyl)-1,1-dicyanoethene (M2), r2 = 0 were determined from Fineman-Ross plot. The order of relative reactivity (1/r1) for difluoro-substituted monomers is 2,4-F,F (0.31) > 2,3-F,F (0.25) > 2,5-F,F (0.22) > 2,6-F,F (0.10). DSC curves showed that the copolymers were amorphous with high T g in comparison with that poly(4-fluorostyrene) indicating a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer units. From the thermogravimetric analysis, the copolymers began to degrade in the range 214–260°C. The copolymer of 4-fluorostyrene and 2-(2,4-difluorophenyl)-1,1-dicyanoethene and poly(4-fluorostyrene) were dielectrically characterized in the range 25–200°C. The dominating relaxation process detected in both materials was the α-relaxation, associated with the dynamic glass transition. The relationship polarity-permittivity was discussed.  相似文献   

11.
Novel copolymers of trisubstituted ethylene monomers, fluorine ring-substituted 2-phenyl-1,1-dicyanoethenes, RC6H4CH[dbnd]C(CN)2 (where R is 2-F, 3-F, and 4-F) and 4-fluorostyrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C-NMR. High T g of the copolymers, in comparison with that of poly(4-fluorostyrene) indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decomposed in two stages in the range 210–600°C.  相似文献   

12.
Copolymerization of 2-phenyl-1,1-dicyanoethylene (PDE) with 4-fluorostyrene and pentafluorostyrene in solution with radical initiation (ABCN) at 70°C yielded random copolymers with PDE alternating units. The composition of the copolymers was calculated from nitrogen analysis and the structure was analyzed by IR, 1H and 13C-NMR. The order of relative reactivity (1/r1) and the tendency toward alternation of monomer units in the copolymer for these two monomers, is 4-fluorostyrene (1.96) > pentafluorostyrene (0.51). Higher glass transition temperature of the copolymers in comparison with that of homopolymers indicates a decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit.  相似文献   

13.
Novel copolymers of trisubstituted ethylene monomers, ring-substituted 2-phenyl-1,1-dicyanoethylenes, RC6H3CH?C(CN)2 (where R is 2,3-(CH3O)2, 2,4-(CH3O)2, 2,5-(CH3O)2, 2,6-(CH3O)2, 3,4-(CH3O)2, and 3,5-(CH3O)2 and 4-fluorostyrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C-NMR. The order of relative reactivity (1/r 1) for the monomers is 2,6-(CH3O)2(2.8) > 2,5-(CH3O)2(2.5) > 2,3-(CH3O)2 (2.1) > 3,5-(CH3O)2 (1.8) > 3,4-(CH3O)2 (0.9) > 2,4-(CH3O)2 (0.7). High Tg of the copolymers, in comparison with that of poly(4-fluorostyrene) indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 250–400°C range with residue, which then decomposition in 400–800°C range.  相似文献   

14.
Novel copolymers of trisubstituted ethylene monomers, ring-substituted 2-phenyl-1,1-dicyanoethylenes, RC6H2CH=C(CN)2 (where R is 2,4-(CH3O)2-3-CH3, 2,3,4-(CH3O)3, 2,4,5-(CH3O)3, 2,4,6-(CH3O)3, 3,4,5-(CH3O)3, 6-Br-3,4-(CH3O)2), 2,3,5-Cl3, 2,3,6-Cl3 and 4-fluorostyrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C-NMR. The order of relative reactivity (1/r 1) for the monomers is 3,4,5-(CH3O)3(10.6) > 2,4,6-(CH3O)3(9.3) > 2,4,5-(CH3O)3 (5.4) > 2,3,4-(CH3O)3 (4.4) > 6-Br-3,4-(CH3O)2 (3.2) > 2,3,5-Cl3 (1.5) > 2,3,6-Cl3 (1.0) > 2,4-(CH3O)2-3-CH3 (0.7). High T g of the copolymers, in comparison with that of poly(4-fluorostyrene) indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–400°C range with residue, which then decomposed in the 400–800°C range.  相似文献   

15.
Treatment of the 2-R-pyrimidines ( 1 , R = methyl, ethyl, i-propyl and t-butyl) with potassium amide/liquid ammonia/potassium permanganate leads to amination at C-4(6). The yields of the 4(6)-amino compounds 3 in-crease in the order 2-methyl (10%), 2-ethyl (30%), 2-i-propyl (45%) and 2-t-butyl (60%). Treatment of the 2-R-N-methylpyrimidinium salts ( 4 , R = hydrogen, methyl) with liquid ammonia/potassium permanganate leads to a regiospecific imination at C-6, the corresponding 2-R-1,6-dihydro-6-imino-1-methylpyrimidines 6 being obtained in 80-85% yield. It is proved by 15N-labelling that no ring opening is involved in these imination reactions. Treatment of the imino compounds with base leads to the corresponding 2.R-6-methylamino-pyrimidines 8 , involving, as proved by 15N-labelling, an ANRORC-mechanism. 2-t-Butyl-1-ethylpyrimidinium tetrafluoroborate ( 9b ) when treated with liquid ammonia/potassium permanganate undergoes N-deethylation, 2-t-butylpyrimidine being exclusively formed.  相似文献   

16.
Novel copolymers of trisubstituted ethylene monomers, ring-substituted 2-phenyl-1,1-dicyanoethylenes, RC6H2CH=C(CN)2 (where R is 4-C6H5O, 2-C6H5CH2O, 3,4-(C6H5CH2O)2, 2-C6H5CH2O-3-CH3O, 3-C6H5CH2O-4-CH3O, 2-Cl-6-NO2, 4-Cl-3-NO2, 5-Cl-2-NO2) and 4-fluorostyrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C-NMR. The order of relative reactivity (1/r 1) for the monomers is 3,4-(C6H5CH2O)2(31.0) > 2-C6H5CH2O-3-CH3O (24.8) > 3-C6H5CH2O-4-CH3O (15.2) > 4-C6H5O (3.1) > 4-Cl-3-NO2 (1.9) > 2-Cl-6-NO2 (1.6) > 5-Cl-2-NO2 (1.5) > 2-C6H5CH2O (1.4). High Tg of the copolymers, in comparison with that of poly(4-fluorostyrene) indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 270-400°C range with residue, which then decomposition in 400–800°C range.  相似文献   

17.
Good yields of some crystalline γ-alkyl esters of L -glutamic acid were obtained by carrying out the esterfication with a small (20–50 mole-%) excess of alcohol in aqueous hydrochloric acid or 60–80% sulfuric acid followed by neutralization with an alkaline solution. This new method made it possible to synthesize various γ-alkyl L -glutamates, including those higher than ethyl, and consequently, various poly(γ-alkyl L -glutamates) such as methyl, ethyl, n-propyl, n-butyl, isobutyl, and isoamyl. The conformation of these poly-L -glutamates in the solid state was determined by the infrared absorption method. The molecular motions of the polymers of γ-methyl, -ethyl, -n-propyl, -n-butyl, and-isoamyl L -glutamates and poly(γ-methyl-D -glutamate) in the solid state were studied by NMR, and dielectric and mechanical measurements. At temperatures up to 400°K., the NMR spectra of poly(γ-methyl D -glutamate) can be explained only by rotational motion of the side chain. Also, from NMR results, rotational motion of C?O groups in the side chain of poly(γ-methyl D -glutamate) is expected near room temperature, and such a motion was examined by dielectric measurements. Rotation of C?O groups in the side chains of polymers of γ-methyl, γ-ethyl, γ-n-propyl, γ-n-butyl, and γ-isoamyl L -glutamate was also observed near room temperature by dielectric measurements in the frequency range from 102 to 106 cps. Activation energies obtained by dielectric and mechanical measurements were similar to those for the side chain motions of the corresponding esters of poly(methacrylic acid). Although it has been noted that the molecular motion of poly(γ-benzyl L -glutamate) in the solid state at room temperature may be related to the motion of its back bone, the molecular motion in these poly-L -glutamates at these temperatures can be explained only in terms of side-chain rotation.  相似文献   

18.
New alternating equimolar copolymers of electrophilic trisubstituted ethylenes, methyl 3-phenyl-2-cyanopropenoate and 2-phenyl-1,1-dicyanoethene, with ethyl, n-butyl, i-butyl, t-butyl, 2-chloroethyl, and phenyl vinyl ethers were prepared by free radical initiation. Chemical compositions of the copolymers are 1 : 1 in broad ranges of monomer ratios. The copolymerization rate of both electrophilic monomers with the vinyl ethers increase in the series 2-chloroethyl > ethyl > phenyl > n-butyl > i-butyl > t-butyl. These variations in the reactivity of the vinyl ethers are discussed in terms of their preferred conformations in donor-acceptor complexes with electrophilic trisubstituted ethylenes. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
Electrophilic trisubstituted ethylene monomers, 2-halophenyl-1,1-dicyanoethylenes, RC6H4CH=C(CN)2 (where R is o-Cl, m-Cl, p-Cl, p-Br, and p-F) were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and malononitrile, and characterized by CHN elemental analysis, IR, 1H and 13C-NMR. All the ethylenes were copolymerized with styrene (M1) in solution with radical initiation (AIBN) at 70°C. The compositions of the copolymers were calculated from nitrogen analysis and the structures were analyzed by IR, 1H and 13C-NMR. The order of relative reactivity (1/r 1) for the monomers is p-Cl (14.8) >m-Cl (2.67)> o-Cl (1.82) > p-Br (1.52) > p-F (1.36). High T g's of the copolymers (> 150°C) in comparison with that of polystyrene indicate a substantial decrease in the chain mobility of the copolymers due to the high dipolar character of the trisubstituted monomer unit. Gravimetric analysis indicated that the copolymers decompose in the range 300–400°C.  相似文献   

20.
Electrophilic trisubstituted ethylenes, fluoro ring-substituted ethyl 2-cyano-1-oxo-3-phenyl-2-propenylcarbamates, RC6H3CH = C(CN)CONHCO2C2H5(where R is 4-F-3-CH3, 2-CF3, 4-CF3, 2,4-diF, 2,5-diF, 2,6-diF, 3,4-diF, and 3,5-diF), were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and N-cyanoacetylurethane, and characterized by CHN analysis, IR, 1H- and 13C-NMR. All the ethylenes were copolymerized with styrene (M1) in solution with radical initiation (ABCN) at 70°C. The compositions of the copolymers were calculated from nitrogen analysis and the structures were analyzed by IR, 1H- and 13C-NMR. The order of relative reactivity (1/r 1) for the monomers 4-CF3 (5.4) > 2,6-diF (2.0) > 2,4-diF (1.7) > 2,5-diF (1.0) > 2-CF3 (0.8) > 3,4-diF (0.5) > 3,5-diF (0.4) > 4-F-3-CH3 (0.3). High T g of the copolymers in comparison with that of polystyrene indicates decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene structural unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in 270–420°C with residue (5–13% wt), which then decomposed in the 420–650°C range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号