首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Transparent glass–ceramics containing zinc–aluminum spinel (ZnAl2O4) nanocrystals doped with tetrahedrally coordinated Co2+ ions were obtained by the sol–gel method for the first time. The gels of composition SiO2–Al2O3–ZnO–CoO were prepared at room temperature and heat-treated at temperature ranging 800–950 °C. When the gel samples were heated up to 900 °C, ZnAl2O4 nanocrystals were precipitated. Co2+ ions were located in tetrahedral sites in ZnAl2O4 nanocrystals. X-ray diffraction analysis shows that the crystallite sizes of ZnAl2O4 crystal become large with the heat-treatment temperature and time, and the crystallite diameter is in the range of 10–15 nm. The dependence of the absorption and emission spectra of the samples on heat-treatment temperature were presented. The difference in the luminescence between Co2+ doped glass–ceramic and Co2+ doped bulk crystal was analysed. The crystal field parameter Dq of 423 cm−1 and the Racah parameters B of 773 cm−1 and C of 3478.5 cm−1 were calculated for tetrahedral Co2+ ions.  相似文献   

3.
《Solid State Ionics》2006,177(1-2):29-35
Microstructure and local structure of spinel LiNixMn2  xO4 (x = 0, 0.1 and 0.2) were studied using X-ray diffraction (XRD) and a combination of X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge spectroscopy (XANES) and Raman scattering with the aim of getting a clear picture of the local structure of the materials responsible for the structural stability of LiNixMn2  xO4. XRD study showed that Ni substitution caused the changes of the materials’ microstructure from the view of the lattice parameter, mean crystallite size, and microstrain. XPS and XANES studies showed the Ni oxidation state in LiNixMn2  xO4 was larger than + 2, and the Mn oxidation state increased with Ni substitution. The decrease of the intensity of the 1s → 4pz shakedown transition on the XANES spectra indicated that Ni substitution suppressed the tetragonal distortion of the [MnO6] octahedron. The Mn(Ni)–O bond in LiNixMn2  xO4, which is stronger than the Mn–O bond in LiMn2O4 was responsible for the blue shift of the A1g Raman mode and could enhance the structural stability of the [Mn(Ni)O6] octahedron.  相似文献   

4.
《Solid State Ionics》2006,177(9-10):847-850
LiCr0.15Mn1.85O4 spinel has been successfully synthesized by glycine–nitrate method (GNM). The presence of pure spinel phase was confirmed by long term XRPD measurements and the Rietveld structural refinement. Lattice parameter was estimated to be 8.2338 Å. Average particle size of prepared powder material is below 500 nm. The BET surface area is 9.6 m2 g 1. As a cathode material for lithium batteries LiCr0.15Mn1.85O4 shows initial discharge capacity of 110 mA h g 1 and capacity retention of 83% after 50 cycles.  相似文献   

5.
The structural, energetic, and thermodynamic properties of the Co3 ? sAlsO4 (s = 0, 1, 2, and 3) crystal family are studied using periodic DFT calculations. We provide a quantitative discussion of the cation distribution effect on the cell parameter, the oxygen Wyckoff position, the interatomic distances and the energies of the structures. It is demonstrated that the low cobalt containing CoAl2O4 spinel is the most stable structure of the Co3 ? sAlsO4 (s = 0, 1, 2, and 3) crystal family.  相似文献   

6.
Novel spinel Li1.15Mn1.96Co0.03Gd0.01O4 + δ was synthesized by high temperature solid-state reaction method. The product was identified as well-defined spinel phase by X-ray diffraction (XRD); the SEM images illustrated that the particle distribution was well-proportioned. The initial special capacity was 126.5 and 128.1 mAh g? 1 at 25 and 50 °C. The fading rate was 0.017% and 0.098% per cycle under 0.5 °C at 25 and 50 °C, respectively. The results showed that Li1.15Mn1.96Co0.03Gd0.01O4 + δ displayed excellent capacity and cycleability.  相似文献   

7.
《Solid State Ionics》2006,177(19-25):1799-1802
Manganese-doped ceria-based oxides, Ce1−xMnxO2−δ (0.05  x  0.3) and Ce1−xyGdxMnyO2−δ˙ (0.05  x 0.2, 0.05  y  0.25) were synthesized, and crystal phase analysis by XRD and measurements of electrical properties were performed. Solubility limit of Mn in Ce1−xMnxO2−δ˙ seemed to be between 5 mol% and 10 mol% and Mn3O4 was the main by-product above the solubility limit in the case of heat treatment at 1300 °C. Judging from the oxygen partial pressure dependence of total conductivity and emf measurements, Ce1−xMnxO2−δ˙ is a single-phase mixed conductor within the composition below the solubility limit, and when the composition of Mn exceeds the solubility limit, it becomes the dual-phase mixed conductor of Ce1−xMnxO2−δ˙ and Mn3O4. The doing of Mn in gadlia-doped ceria, Ce1−xyGdxMnyO2−δ˙ (0.05  x  0.2, 0.05  y  0.25), was more difficult than that in CeO2 presumably due to the preferential reaction between Gd and Mn to give GdMnO3 to the GDC solid solution formation, and the Mn doping seems not to be so effective in preparing the mixed ionic–electronic conductor based on GDC.  相似文献   

8.
Nanoparticles of Mn of sizes  < 500 Å were prepared by the ball-milling technique. The temperature dependence of the magnetic susceptibility χ showed systematic variation with particle size. Peaks observed in χ were attributed to the magnetic ordering of the oxides Mn3O4and MnO. Peaks found in (χT) / ∂T were associated with the Neel temperature ofα -Mn. We estimated that our samples contain about 0.4% of Mn3O4. This low concentration of Mn3O4was not detected by X-ray diffraction experiments but contributed significantly to the magnetization measurements.  相似文献   

9.
《Solid State Ionics》2006,177(17-18):1421-1428
Spinel lithium manganese oxides can be used as Li+ adsorbent with topotactical extraction of lithium. In this paper, the solid state methods were introduced to prepare spinel lithium manganese precursors with Li2CO3 and LiOH·H2O as different Li sources. The Li+ uptake was studied to clarify the correction between Li+ adsorption capacity and the preparation conditions of precursors, including different Li sources, Li/Mn mole ratios and heating time. The results indicated that the Li+-extracted materials prepared with LiOH·H2O and MnCO3 usually have higher Li+ adsorption capacity than Li2CO3 and MnCO3, and an ascending trend was found in Li+ uptake with increasing Li/Mn mole ratio in the preparation of the precursor, but it is not proportional. The Mn2O3 impurities could be the primary reason for decreasing Li+ adsorption capacity. Furthermore, it is concluded that the Li+-extracted materials obtained from spinel manganese oxides synthesized with Li/Mn = 1.0 can serve as selective Li+ absorbents due to its high selectivity and large adsorption capacity.  相似文献   

10.
Ferrimagnetism has been extensively studied in garnets, whereas it is rare to find the antiferromagnet. Present work will demonstrate antiferromagnetism in the two Mn–V-garnets. Antiferromagnetic phase transition in AgCa2Mn2V3O12 and NaPb2Mn2V3O12 has been found, where the magnetic Mn2+ ions locate only on octahedral A site. The heat capacity shows sharp peak due to antiferromagnetic order with the Néel temperature TN=23.8 K for AgCa2Mn2V3O12 and TN=14.2 K for NaPb2Mn2V3O12. The magnetic entropy change over a temperature range 0–50 K is 13.9 J K?1 mol-Mn2+-ions?1 for AgCa2Mn2V3O12 and 13.6 J K?1 mol-Mn2+-ions?1 for NaPb2Mn2V3O12, which are in good agreement with calculated value of Mn2+ ion with spin S=5/2. The magnetic susceptibility shows the Curie–Weiss behavior over the range 29–350 K. The effective magnetic moment μeff and the Weiss constant θ are μeff=6.20 μB Mn2+-ion?1 and θ=?34.1 K (antiferromagnetic sign) for AgCa2Mn2V3O12 and μeff=6.02 μB Mn2+-ion?1 and θ=?20.8 K for NaPb2Mn2V3O12.  相似文献   

11.
A thin interlayer of samarium doped ceria (SDC) is applied as diffusion barrier between La1 ? xSrxCoyFe1 ? yO3 x = 0.1–0.4, y = 0.2–0.8 (LSCF) cathode and La1.8Dy0.2Mo1.6W0.4O9 (LDMW82) electrolyte to obstruct Mo–Sr diffusion and solid state reaction in the intermediate temperature range of SOFC. We demonstrate the effectiveness of the diffusion barrier through contrasting the clearly defined interfaces of LSCF/SDC/LDMW82 against a rugged growing product layer of LSCF/LDMW82 in 800 °C thermal annealing, and analyze the product composition and the probable new phase. In addition, the measured polarization resistance is considerably lower for the half-cell with a diffusion barrier. Therefore, the electrochemical performance of the LSCF cathode is investigated on the SDC-protected LDMW82. The cell with LSCF (x = 0.4) persistently outperforms the one with x = 0.2 in polarization resistance because of its small low-frequency contribution. The activation energy of polarization resistance is also lower for La0.6Sr0.4CoyFe1 ? yO3 (112–135 kJ/mol), than that for La0.8Sr0.2CoyFe1 ? yO3 (156–164 kJ/mol). La0.6Sr0.4CoyFe1 ? yO3 y = 0.4–0.8 is the proper composition for the cathode interfaced to SDC/LDMW82.  相似文献   

12.
《Solid State Communications》2002,121(2-3):133-137
La1−xMnOδ (x=−0.02 to 0.35) nanocrystalline powders were prepared by a new sol–gel method. It is used the acrylamide gelification to form an organic 3D tangled network where a solution of the respective cations is soaked. This method was adapted to cover a broad range of high impact electro–ceramic oxides, which a particular example is the CMR nanopowders reported in this work. The acrylamide sol–gel process is a fast, cheaper and easy to scale-up method for obtaining fine powders of complex oxides. This synthesis method allows performing 100 g of highly pure nanopowders in one run with simple laboratory scale. The sponge like powder obtained consists of thin sheets composed of nanocrystallites whose size varies from 66 nm to 30 nm, depending on composition. The oxygen content of the manganite powder is shown to decrease with vacancy-doping on lanthanum site. Such a evolution can be explained for La/Mn<0.9 by considering a demixtion of the powder into La0.9MnO3 and Mn3O4 phases, while for La/Mn>0.9, the high oxygen excess leads to consider vacancies on both lanthanum and manganese sites. Both hypotheses are supported by magnetic measurements, which show a constant Curie temperature of 295 K for La/Mn<0.9, while for La/Mn>0.9, the occurrence of vacancies on manganese sites progressively impedes the ferromagnetic interactions, leading to a cluster–glass behaviour in the case of the highly manganese-deficient La0.94Mn0.92O3 compound.  相似文献   

13.
Nanoscale Co3O4 particles were doped into MgB2 tapes with the aim of developing superconducting wires with high-current-carrying capacity. Fe-sheathed MgB2 tapes with a mono-core were prepared using the in situ powder-in-tube (PIT) process with the addition of 0.2–1.0 mol% Co3O4. The critical temperature decreased monotonically with an increasing amount of doped Co3O4 particles for all heat-treatment temperatures from 600 to 900 °C. However, the transport critical current density (Jc) at 4.2 K varied with the heat-treatment temperatures. The Jc values in magnetic fields ranging from 7 to 12 T decreased monotonically with increasing Co3O4 doping level for a heat-treatment temperature of 600 °C. In contrast, some improvements on the Jc values of the Co3O4 doped tapes were observed in the magnetic fields below 10 T for 700 and 800 °C. Furthermore, Jc values in all the fields measured increased as the Co3O4 doping level increase from 0 to 1 mol% for 900 °C. This heat-treatment temperature dependence of the Jc values could be explained in terms of the heat-treatment temperature dependence of the irreversibility field with Co3O4 doping.  相似文献   

14.
The transition metal-doped spinel cathode materials, LiM0.5Mn1.5O4 (M=Ni. Co, Cr) were prepared by solid-state reaction. The structure and morphology of the samples were investigated by X-ray diffraction, Rietveld refinement and scanning electron microscopy (SEM). The diffraction peaks of all the samples corresponded to a single phase of cubic spinel structure with a space group Fd3m. Field-emission SEM shows octahedron like shapes and the primary particles size was between 500 nm and 2 μm. Oxidation states of Ni, Co and Cr were found to be 2+, 2+ and 3+ as revealed by X-ray photoelectron spectroscopy. During discharging, LiNi0.5Mn1.5O4 and LiCo0.5Mn1.5O4 sample shows more than 130 mAh/g between 3.5 and 5.2 V at a current density of 0.65 mA/cm2 and well developed plateau around 5 V, respectively.  相似文献   

15.
《Solid State Ionics》2006,177(13-14):1199-1204
Perovskite oxides of the composition BaxSr1−xCo1−yFeyO3−δ(BSCF) were synthesized via a modified Pechini method and characterized by X-ray diffraction, dilatometry and thermogravimetry. Investigations revealed that single-phase perovskites with cubic structure can be obtained for x  0.6 and 0.2  y  1.0. The as-synthesized BSCF powders can be sintered in several hours to nearly full density at temperatures of over 1180 °C. Thermal expansion curves of dense BSCF samples show nonlinear behavior with sudden increase in thermal expansion rate between about 500 °C and 650 °C, due mainly to the loss of lattice oxygen caused by the reduction of Co4+ and Fe4+ to lower valence states. Thermal expansion coefficients (TECs) of BSCF were measured to be 19.2–22.9 × 10 6 K 1 between 25 °C and 850 °C. Investigations showed further that Ba0.5Sr0.5Co0.8Fe0.2O3−δ is chemically compatible with 8YSZ and 20GDC for temperatures up to 800 °C, above which severe reactions were detected. After being heat-treated with 8YSZ or 20GDC for 5 h above 1000 °C, Ba0.5Sr0.5Co0.8Fe0.2O3−δ was completely converted to phases like SrCoO3−δ, BaCeO3, BaZrO3, etc.  相似文献   

16.
《Ultrasonics sonochemistry》2014,21(4):1366-1373
Porous (Ce0.5Zr0.5)O2 solid solutions were prepared by thermolysis (T = 285 °C) or sonolysis (20 kHz, I = 32 W cm−2, Pac = 0.46 W mL−1, T = 200 °C) of Ce(III) and Zr(IV) acetylacetonates in oleylamine or hexadecylamine under argon followed by heat treatment of the precipitates obtained in air at 450 °C. Transmission Electron Microscopy images of the samples show nanoparticles of ca. 4–6 nm for the two synthetic approaches. The powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray and μ-Raman spectroscopy of solids obtained after heat treatment indicate the formation of (Ce0.5Zr0.5)O2 solid solutions with a metastable tetragonal crystal structure for the two synthetic routes. The specific surface area of the samples varies between 78 and 149 m2 g−1 depending on synthesis conditions. The use of Barrett–Joyner–Halenda and t-plot methods reveal the formation of mixed oxides with a hybrid morphology that combines mesoporosity and microporosity regardless of the method of preparation. Platinum nanoparticles were deposited on the surface of the mixed oxides by sonochemical reduction of Pt(IV). It was found that the materials prepared by sonochemistry exhibit better resistance to dissolution during the deposition process of platinum. X-ray photoelectron spectroscopy analysis shows the presence of Pt(0) and Pt(II) on the surface of mixed oxides. Porous (Ce0.5Zr0.5)O2 mixed oxides loaded with 1.5 %wt. platinum exhibit high activity in catalytic wet air oxidation of formic acid at 40 °C.  相似文献   

17.
Layered LiNi0.5Mn0.5 ? xAlxO2 (x = 0, 0.02, 0.05, 0.08, and 0.1) series cathode materials for lithium-ion batteries were synthesized by a combination technique of co-precipitation and solid-state reaction, and the structural, morphological, and electrochemical properties were examined by XRD, FT-IR, XPS, SEM, CV, EIS, and charge–discharge tests. It is proven that the aliovalent substitution of Al for Mn promoted the formation of LiNi0.5Mn0.5 ? xAlxO2 structures and induced an increase in the average oxidation number of Ni, thereby leading to the shrinkage of the lattice volume. Among the LiNi0.5Mn0.5 ? xAlxO2 materials, the material with x = 0.05 shows the best cyclability and rate ability, with discharge capacities of 219, 169, 155, and 129 mAh g? 1 at 10, 100, 200, and 400 mA g? 1 current density respectively. Cycled under 40 mA g? 1 in 2.8–4.6 V, LiNi0. 5Mn0.45Al0.05O2 shows the highest discharge capacity of about 199 mAh g? 1 for the first cycle, and 179 mAh g? 1 after 40 cycles, with a capacity retention of 90%. EIS analyses of the electrode materials at pristine state and state after first charge to 4.6 V indicate that the observed higher current rate capability of LiNi0. 5Mn0.45Al0.05O2 can be understood due to the better charge transfer kinetics.  相似文献   

18.
A series of Mn–Zn Ferrite nanoparticles (<15 nm) with formula MnxZn1−xFe2O4 (where x=0.00, 0.35, 0.50, 0.65) were successfully prepared by citrate-gel method at low temperature (400 °C). X-ray diffraction analysis confirmed the formation of single cubic spinel phase in these nanoparticles. The FESEM and TEM micrographs revealed the nanoparticles to be nearly spherical in shape and of fairly uniform size. The fractions of Mn2+, Zn2+ and Fe3+ cations occupying tetrahedral sites along with Fe occupying octahedral sites within the unit cell of different ferrite samples are estimated by room temperature micro-Raman spectroscopy. Low temperature Mossbauer measurement on Mn0.5Zn0.5Fe2O4 has reconfirmed the mixed spinel phase of these nanoparticles. Room temperature magnetization studies (PPMS) of Mn substituted samples showed superparamagnetic behavior. Manganese substitution for Zn in the ferrite caused the magnetization to increase from 04 to18 emu/g and Lande's g factor (estimated from ferromagnetic resonance measurement) from 2.02 to 2.12 when x was increased up to 0.50. The FMR has shown that higher Mn cationic substitution leads to increase in dipolar interaction and decrease in super exchange interaction. Thermomagnetic (MT) and magnetization (MH) measurements have shown that the increase in Mn concentration (up to x=0.50) enhances the spin ordering temperature up to 150 K (blocking temperature). Magnetocrystalline anisotropy in the nanoparticles was established by Mossbauer, ferromagnetic resonance and thermomagnetic measurements. The optimized substitution of manganese for zinc improves the magnetic properties and makes these nanoparticles a potential candidate for their applications in microwave region and biomedical field.  相似文献   

19.
J.-H. Kim  A. Manthiram 《Solid State Ionics》2009,180(28-31):1478-1483
Perovskite-related intergrowth oxides Sr2.7Ln0.3Fe1.4Co0.6O7 ? δ (Ln = La, Nd, Sm, and Gd) have been investigated as cathode materials for solid oxide fuel cells (SOFC). With decreasing size of the Ln3+ ions, the unit cell volume, oxygen content, thermal expansion coefficient (TEC), and total electrical conductivity decrease from Ln = La to Gd. The decreasing unit cell volume and oxygen content is attributed to the decreasing size of Ln3+ ions from Ln = La to Gd and a consequent preference for lower coordination numbers. While the decrease in the ionicity of the Ln–O bonds from Ln = La to Gd causes a decrease in the TEC, the increasing amount of oxygen vacancies leads to a decrease in electrical conductivity arising from a thermally activated semiconducting behavior. The cathode polarization conductance (Rp? 1) measured using the ac-impedance spectroscopy and the catalytic activity for the oxygen reduction reaction in SOFC decrease from Ln = La to Gd partly due to the decrease in electrical conductivity.  相似文献   

20.
Doped lanthanum manganese chromite based perovskite, La0.7A0.3Cr0.5Mn0.5O3 ? δ (LACM, A = Ca, Sr, Ba), on yttria-stabilized zirconia (YSZ) electrolyte is investigated as potential electrode materials for solid oxide fuel cells (SOFCs). The electrical conductivity and electrochemical activity of LACM depend on the A-site dopant. The best electrochemical activity is obtained on the La0.7Ca0.3Cr0.5Mn0.5O3 ? δ/YSZ (LCCM/YSZ) composite electrodes. The conductivity of LCCM is 29.9 S cm? 1 at 800 °C in air, and the electrode polarization resistance (RE) of the LCCM/YSZ composite cathode for the O2 reduction reaction is 0.5 Ω cm2 at 900 °C. The effect of Gd-doped ceria (GDC) impregnation on the LCCM cathode polarization resistances is also studied. GDC impregnation significantly enhances the electrochemical activity of the LCCM cathode. In the case of the 6.02 mg cm? 2 GDC-impregnated LCCM cathode, RE is 0.4 Ω cm2 at 800 °C, ~ 60 times smaller than 24.4 Ω cm2 measured on a LCCM cathode without the GDC impregnation. Finally the electrochemical activities of the doped lanthanum manganese chromites for the H2 oxidation reaction are also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号